Physics-aware models with SPDEs: Models and Perspectives

M. PEREIRA

Geosciences and Geoengineering Department, Mines Paris - PSL University mike.pereira@minesparis.psl.eu

Joint work with L. Clarotto, N. Desassis, A. Lang, C. Sire, G. Victorino Cardoso

Spatial Statistics 2025 July 17th, 2025

■ DATA FROM PHYSICAL PROCESSES

Many applications of Geostatistics to data linked to physical processes

- Climate
 - Interpolation of climate/weather variables (Temperature, Precipitation, Geotrophic winds,...)
 - Global scale data assimilation
 - Stochastic Generators
- Environment
 - Diffusion of pollutant in soils
 - Transport of pollutant in atmosphere, Air quality monitoring
- And other fields
 - Disease mapping
 - Seismic wave mapping

ightarrow Simple (PDE-based) physical can be used to describe the corresponding variables

Daily Sea Surface Temperature (Source: NOOA)

Sulfate dispersion in the atmosphere (Source: NASA)

■ DATA FROM PHYSICAL PROCESSES

Examples of "physical" models

■ Diffusion phenomena (eg. Temperature): Heat equation

$$\frac{\partial Z}{\partial t} - \theta \Delta Z = u$$

Transport phenomena (eg. Concentration of pollutant in the air):
 Advection-Diffusion equation

$$\frac{\partial Z}{\partial t} + \gamma \cdot \nabla Z - \theta \Delta Z = u$$

■ Wave propagation : Wave equation

$$\frac{\partial^2 Z}{\partial t^2} - \theta \Delta Z = 0$$

ightarrow Can we incorporate this a priori knowledge into geostatistical modeling?

Daily Sea Surface Temperature (Source: NOOA)

Sulfate dispersion in the atmosphere (Source: NASA)

Quantity of interest (QoI) Physical variable Z over a spatial/spatio-temporal domain $\mathfrak D$

Data (Noisy) Observations $Y(x_i)$ of Z at locations $(x_1, \ldots, x_{N_D}) \in \mathcal{D}$

Quantity of interest (QoI) Physical variable Z over a spatial/spatio-temporal domain ${\mathfrak D}$

Data (Noisy) Observations $Y(x_i)$ of Z at locations $(x_1,\ldots,x_{N_D})\in \mathcal{D}$

Goal (Probabilistic) Predictions of the Qol Z at unobserved locations

ightarrow Need a probabilistic model on Y that accounts for spatial "structure" of Y

Quantity of interest (QoI) Physical variable Z over a spatial/spatio-temporal domain ${\mathfrak D}$

Data (Noisy) Observations $Y(x_i)$ of Z at locations $(x_1,\ldots,x_{N_D})\in \mathcal{D}$

Goal (Probabilistic) Predictions of the Qol Z at unobserved locations

- ightarrow Need a probabilistic model on Y that accounts for spatial "structure" of Y
- ightarrow If possible, account for the fact that the QoI arises from a physical model

$$\begin{cases} \mathcal{L}Z = u & \text{ on } \mathfrak{D} \\ \mathfrak{B}Z = u_B & \text{ on } \partial \mathfrak{D} \end{cases}$$

where \mathcal{L} is a *linear* (differential) operator, and u is a source term, and \mathcal{B} is a *linear* operator defining boundary/initial conditions

Assumption: Linear well-posed PDE problems

■ SPATIO-TEMPORAL MODELING WITH GAUSSIAN PROCESSES

$$\frac{\text{Gaussian Process (GP)}}{\mathcal{Z}: \{\mathcal{Z}(x): x \in \mathcal{D}\}}$$
 High correlation

Realization

 $\frac{\text{Qol across space}}{Z:\{Z(x):x\in\mathcal{D}\}}$ High "similarity"

ightarrow Allows to model non i.i.d data while only specifying the first two moments

Gaussian Process \mathcal{Z}

Expectation / Deterministic effects Deterministic trend $\mu(t,s)$ (eg. Regression over some covariates)

Residuals / Random effects Zero-mean and characterized by a covariance kernel $C_{\mathbb{Z}}$:

$$\Big|\operatorname{Cov}(Z(x), Z(x')) = C_{\mathcal{Z}}(x, x')\Big|$$

Qol Physical variable Z defined across time [0,T] and/or ${\mathfrak D}$

Data (Noisy) Observations $Y = (Y(x_1), \dots, Y(x_{N_D}))^T$ of Z at $x_1, \dots, x_{N_D} \in \mathcal{D}$

Model Qol $Z \to \mathsf{GP}\ \mathcal{Z}$ and Data $Y \to \mathcal{Y}$ where

$$y(x_i) = z(x_i) + \tau \varepsilon_i, \quad i \in \{1, \dots, k\}$$

 $\rightarrow \varepsilon_1, \dots, \varepsilon_{N_D} \sim \mathcal{N}(0,1)$ iid noise

Goal (Probabilistic) Predictions of Y at unobserved locations

 \rightarrow Vector of observations Y can be written

$$Y = Z + \tau \varepsilon$$
, $\varepsilon \sim \mathcal{N}(0, I)$

where $\boldsymbol{Z} = (\mathcal{Z}(x_1), \dots, \mathcal{Z}(x_n))^T$ is a Gaussian vector \Rightarrow Explicit likelihood:

$$L(\boldsymbol{\theta}) = \frac{1}{2}\log|\boldsymbol{\Sigma}(\boldsymbol{\theta}) + \tau^2\boldsymbol{I}| - \frac{1}{2}(\boldsymbol{Y} - \boldsymbol{\mu}(\boldsymbol{\theta}))^T(\boldsymbol{\Sigma}(\boldsymbol{\theta}) + \tau^2\boldsymbol{I})^{-1}(\boldsymbol{Y} - \boldsymbol{\mu}(\boldsymbol{\theta})) + \text{ Constant}$$

where
$${m \mu} = \mathbb{E}[{m Z}]$$
 and ${m \Sigma} = \left[C_{\mathbb{Z}}(x_k,x_l)\right]_{1 \leq k,l \leq N_D}$

M. Pereira - Physics-aware models with SPDEs: Models and Perspectives

Qol Physical variable Z defined across time [0,T] and/or ${\mathfrak D}$

Data (Noisy) Observations
$$Y = (Y(x_1), \dots, Y(x_{N_D}))^T$$
 of Z at $x_1, \dots, x_{N_D} \in \mathcal{D}$

Model Qol $Z \to \mathsf{GP}\ \mathcal{Z}$ and Data $Y \to \mathcal{Y}$ where

$$y(x_i) = z(x_i) + \tau \varepsilon_i, \quad i \in \{1, \dots, k\}$$

$$\rightarrow \varepsilon_1, \dots, \varepsilon_{N_D} \sim \mathcal{N}(0,1)$$
 iid noise

Goal (Probabilistic) Predictions of Y at unobserved locations

ightarrow Closed-form conditional distributions $\left(\mathcal{Z}(x')|m{Y}\right)\sim\mathcal{N}(m(x'),\sigma^2(x'))$ where

$$m(x') = \sum_{k=1}^{N_D} \left[\left(\mathbf{\Sigma} + \tau^2 \mathbf{I} \right)^{-1} \mathbf{Y} \right]_k C_{\mathcal{Z}}(x_k, x'), \quad \text{with } \mathbf{\Sigma} = \left[C_{\mathcal{Z}}(x_k, x_l) \right]_{1 \leq k, l \leq N_D}$$

$$\sigma^{2}(x') = C_{\mathcal{Z}}(x', x') - \sum_{l=1}^{N_{D}} \sum_{l=1}^{N_{D}} C_{\mathcal{Z}}(x', x_{k}) \left[\left(\boldsymbol{\Sigma} + \tau^{2} \boldsymbol{I} \right)^{-1} \right]_{kl} C_{\mathcal{Z}}(x_{l}, x')$$

M. Pereira - Physics-aware models with SPDEs: Models and Perspectives

■ OUTLINE

I. Covariance-based approaches

II. SPDE approach

III. Challenges in inference

■ PHYSICALLY-MOTIVATED MEAN

First possibility: Set mean of GP as output of physical model

- Examples: Regression over several physical model outputs
- Residuals often chosen with simple structure: fully independent or independent in time, stationary in space
- Ex: Applications in predictive maintenance (Zhang et al., 2022; Jin et al., 2019)

■ PHYSICALLY-CONSTRAINED COVARIANCE

• Second possibility: Constrain the covariance kernel to yield physically realistic GPs

• Question: How do we pick the covariance kernel?

■ KERNEL MAGIC

Consider a GP $\mathcal Z$ with covariance kernel

$$C_{\mathcal{Z}}(x,y) = \operatorname{Cov}(\mathcal{Z}(x),\mathcal{Z}(y))$$

• (Under some regularity assumptions) The derivative of a GP is a GP, and

$$Cov(\frac{\partial}{\partial x}\mathcal{Z}(x), \frac{\partial}{\partial y}\mathcal{Z}(y)) = \frac{\partial}{\partial x}\frac{\partial C}{\partial y}(x, y)$$

• More generally, when applying a linear operator to a GP, we get a GP :

$$Cov(\mathcal{L}_x\mathcal{Z}(x), \mathcal{L}_y\mathcal{Z}(y)) = (\mathcal{L}_x\mathcal{L}_yC)(x,y)$$

Moreover, the "vector" $(\mathcal{L}\mathcal{Z},\mathcal{Z})$ is also a GP

→ Use this to "constraint" kernel into incorporating physical constraints

Recall the physical constraint on the Qol

$$\mathcal{L}Z = u$$

with $\mathcal L$ a linear differential operator, u a source term, and additional boundary/initial conditions

■ Idea: Replace Z by a GP $\mathcal Z$ with a fixed kernel $C_{\mathcal Z}$ (eg. $C_{\mathcal Z}(x,y) = \exp(-\|x-y\|^2)$):

$$\mathcal{L}\mathcal{Z} = \mathcal{U}$$

 \Rightarrow The kernels of $\mathcal U$ and of the pair $(\mathcal U,\mathcal Z)$ (cross-covariance) can be computed from $\mathcal L$ and $C_{\mathcal Z}$:

$$C_{\mathcal{U}}(x,y) = \mathcal{L}_x \mathcal{L}_y C_{\mathcal{Z}}(x,y), \quad C_{\mathcal{U},\mathcal{Z}}(x,y) = \mathcal{L}_x C_{\mathcal{Z}}(x,y)$$

Recall the physical constraint on the Qol

$$\mathcal{L}Z = u$$

with $\mathcal L$ a linear differential operator, u a source term, and additional boundary/initial conditions

■ Idea: Replace Z by a GP $\mathcal Z$ with a fixed kernel $C_{\mathcal Z}$ (eg. $C_{\mathcal Z}(x,y) = \exp(-\|x-y\|^2)$):

$$\mathcal{L}\mathcal{Z} = \mathcal{U}$$

 \Rightarrow The kernels of $\mathcal U$ and of the pair $(\mathcal U,\mathcal Z)$ (cross-covariance) can be computed from $\mathcal L$ and $C_{\mathcal Z}$:

$$C_{\mathcal{U}}(x,y) = \mathcal{L}_x \mathcal{L}_y C_{\mathcal{Z}}(x,y), \quad C_{\mathcal{U},\mathcal{Z}}(x,y) = \mathcal{L}_x C_{\mathcal{Z}}(x,y)$$

- lacksquare Then, we can "enforce" the PDE by adequately conditioning the pair $(\mathcal{Z},\mathcal{U})$
 - \rightarrow Create "data" to enforce (or not) the right-hand side : $\mathcal{U}(y_i) = u(y_i), y_1, \dots, y_p \in \mathcal{D}$
 - → Create "data" to enforce potential initial/boundary conditions

Recall the physical constraint on the Qol

$$\mathcal{L}Z = u$$

with $\mathcal L$ a linear differential operator, u a source term, and additional boundary/initial conditions

■ Idea: Replace Z by a GP $\mathcal Z$ with a fixed kernel $C_{\mathcal Z}$ (eg. $C_{\mathcal Z}(x,y) = \exp(-\|x-y\|^2)$):

$$\mathcal{L}\mathcal{Z} = \mathcal{U}$$

 \Rightarrow The kernels of $\mathcal U$ and of the pair $(\mathcal U,\mathcal Z)$ (cross-covariance) can be computed from $\mathcal L$ and $C_{\mathcal Z}$:

$$C_{\mathcal{U}}(x,y) = \mathcal{L}_x \mathcal{L}_y C_{\mathcal{Z}}(x,y), \quad C_{\mathcal{U},\mathcal{Z}}(x,y) = \mathcal{L}_x C_{\mathcal{Z}}(x,y)$$

- lacktriangle Then, we can "enforce" the PDE by adequately conditioning the pair $(\mathcal{Z},\mathcal{U})$
 - \rightarrow Create "data" to enforce (or not) the right-hand side : $\mathcal{U}(y_i) = u(y_i), y_1, \dots, y_p \in \mathcal{D}$
 - → Create "data" to enforce potential initial/boundary conditions
- lacktriangle Finally, compute a posteriori distribution of $\mathcal Z$ (and of $\mathcal U$!) given "real" data m Y and artificial (PDE-enforcing) data

M. Pereira - Physics-aware models with SPDEs: Models and Perspectives

Recall the physical constraint on the Qol

$$\mathcal{L}Z = u$$

with \mathcal{L} a linear differential operator, u a source term, and additional boundary/initial conditions Assumption: We can compute the solution operator \mathcal{L}^{-1} : Source term \mapsto Solution of the PDE (eg. Green's function, spectral approach)

lacktriangle Alternative approach: Fix the kernel of ${\mathcal U}$ instead (eg. $C_{\mathcal U}(x,y)=\exp(-\|x-y\|^2)$) and use

$$\mathcal{L}\mathcal{Z} = \mathcal{U} \quad \leftrightarrow \quad \mathcal{Z} = \mathcal{L}^{-1}\mathcal{U}$$

where \mathcal{L}^{-1} denotes the solution operator associated \Rightarrow The kernels of \mathcal{Z} and of the pair $(\mathcal{U},\mathcal{Z})$ (cross-covariance) can be computed from \mathcal{L}^{-1} and $C_{\mathcal{Z}}$

Recall the physical constraint on the Qol

$$\mathcal{L}Z = u$$

with \mathcal{L} a linear differential operator, u a source term, and additional boundary/initial conditions Assumption: We can compute the solution operator \mathcal{L}^{-1} : Source term \mapsto Solution of the PDE (eg. Green's function, spectral approach)

• Alternative approach: Fix the kernel of \mathcal{U} instead (eg. $C_{\mathcal{U}}(x,y) = \exp(-\|x-y\|^2)$) and use

$$\mathcal{L}\mathcal{Z} = \mathcal{U} \quad \leftrightarrow \quad \mathcal{Z} = \mathcal{L}^{-1}\mathcal{U}$$

where \mathcal{L}^{-1} denotes the solution operator associated \Rightarrow The kernels of \mathcal{Z} and of the pair $(\mathcal{U},\mathcal{Z})$ (cross-covariance) can be computed from \mathcal{L}^{-1} and $C_{\mathcal{Z}}$

- Note that
 - PDE parameters can now be part of the inference: Part of kernel parameters
 - Putting a prior on $\mathcal U$ can be seen as a way of dealing with unknown source terms
 - Enforce PDE constraint on \mathcal{Z} or on the pair $(\mathcal{Z},\mathcal{U})$ (\rightarrow Physics-based multivariate model)

Recall the physical constraint on the Qol

$$\mathcal{L}Z = u$$

with \mathcal{L} a linear differential operator, u a source term, and additional boundary/initial conditions Assumption: We can compute the solution operator \mathcal{L}^{-1} : Source term \mapsto Solution of the PDE (eg. Green's function, spectral approach)

- Examples of applications
 - Approximate solutions of PDEs (Raissi et al., 2017)
 - Estimation of geostrophic and tropical winds (Berliner, 2003; Wikle et al., 2001) o Gradient constraints on components
 - Concentrations of proteins in drosophila (López-Lopera et al., 2019) o Reaction diffusion equation

■ COMMENTS ABOUT THE COVARIANCE-BASED APPROACH

Starting from the relation $\mathcal{L}\mathcal{Z} = \mathcal{U}$

Challenges when putting the GP prior on \mathcal{Z}

- The regularity of $\mathbb Z$ depends on the choice of $C_{\mathbb Z}$ (eg. Gaussian kernel \to Infinitely differentiable paths)
- Need to come up with sensible kernels for the QoI: Challenging when
 - Non-stationarity / Transport phenomena
 - Non-Euclidean geometries for the spatial domain

Challenges when putting the GP prior on ${\mathcal U}$

- The solution operator is not rarely available in closed-form
 - → Alternative approach: Solve the Stochastic PDE numerically

(Source: NASA)

■ OUTLINE

I. Covariance-based approaches

II. SPDE approach

III. Challenges in inference

THE SPDE APPROACH

Basic idea: if \mathcal{Z} is an isotropic Markovian field over \mathbb{R}^d , then it is **equivalently** characterized by (Whittle, 1954; Rozanov, 1977):

Spectral density
$$\Gamma_{\mathcal{Z}} = \mathscr{F}[C_{\mathcal{Z}}]$$

$$\Gamma_{\mathcal{Z}}: oldsymbol{\xi} \in \mathbb{R}^d \mapsto rac{1}{P(\|oldsymbol{\xi}\|^2)}$$

Stochastic partial differential equation (SPDE)

$$\boxed{P(-\Delta)^{1/2}\mathcal{Z} = \mathcal{W}}$$

- $\begin{tabular}{l} \blacksquare \begin{tabular}{l} \mathcal{W}: Gaussian white noise \\ \hline \blacksquare \begin{tabular}{l} $P(-\Delta)^{1/2}\mathcal{Z}:=\mathscr{F}^{-1}$ & $\xi\mapsto\sqrt{P(\|\xi\|^2)}\times\mathscr{F}[\mathcal{Z}](\xi)$ \\ \hline \end{tabular}$

where P is a **polynomial**, strictly positive over \mathbb{R}_+

■ THE SPDE APPROACH

Basic idea: if \mathcal{Z} is an isotropic Markovian field over \mathbb{R}^d , then it is **equivalently** characterized by (Whittle, 1954; Rozanov, 1977):

Spectral density
$$\Gamma_{\mathcal{Z}} = \mathscr{F}[C_{\mathcal{Z}}]$$

$$\Gamma_{\mathcal{Z}}: oldsymbol{\xi} \in \mathbb{R}^d \mapsto rac{1}{P(\|oldsymbol{\xi}\|^2)}$$

Stochastic partial differential equation (SPDE)

$$P(-\Delta)^{1/2}\mathcal{Z} = \mathcal{W}$$

- W: Gaussian white noise

where P is a **polynomial**, strictly positive over \mathbb{R}_+

$$\rightarrow$$
 In particular, if $P(x)=(\kappa^2+x)^{\alpha}$, i.e. with the SPDE

$$(\kappa^2 - \Delta)^{\alpha/2} \mathcal{Z} = \mathcal{W}$$

then \mathcal{Z} has a Matérn covariance function

$$C_{\mathcal{Z}}(x,x+h) = \frac{\sigma^2}{2^{\nu-1}\Gamma(\nu)} (\kappa ||h||)^{\nu} \mathcal{K}_{\nu}(\kappa ||h||), \ (\nu = \alpha - d/2)$$

THE SPDE APPROACH

Basic idea: if \mathcal{Z} is an isotropic Markovian field over \mathbb{R}^d , then it is **equivalently** characterized by (Rozanov, 1977):

Spectral density

$$\Gamma_{\mathcal{Z}}: \boldsymbol{\xi} \in \mathbb{R}^d \mapsto \frac{1}{P(\|\boldsymbol{\xi}\|^2)}$$

Stochastic partial differential equation (SPDE)

$$P(-\Delta)^{1/2}\mathcal{Z} = \mathcal{W}$$

- $\begin{array}{l} \blacksquare \ \, \mathcal{W} \colon \mbox{ Gaussian white noise} \\ \blacksquare \ \, \displaystyle \frac{P(-\Delta)^{1/2} \mathcal{Z} := \mathscr{F}^{-1} \left[\boldsymbol{\xi} \mapsto \sqrt{P(\|\boldsymbol{\xi}\|^2)} \times \mathscr{F}[\mathcal{Z}](\boldsymbol{\xi}) \right] } \end{array}$

where P is a **polynomial**, strictly positive over \mathbb{R}_{\perp}

SPDE approach (Lindgren et al., 2011, 2022)

- See GPs as solutions of SPDEs (rather than through their covariance kernel)
- Solve SPDE numerically with finite elements (or finite volume) method to sample GP / characterize its distribution

■ FINITE ELEMENT APPROXIMATION OF SPDES

Goal: Find an approximation of the solution to: $P(-\Delta)^{1/2} \mathcal{I} = \mathcal{W}$

$$P(-\Delta)^{1/2}\mathcal{Z} = \mathcal{W}$$

Triangulation of the domain

Piecewise linear approximation of the solution

$$\mathcal{Z}(\boldsymbol{p}) pprox \widehat{\mathcal{Z}}(\boldsymbol{p}) = \sum_{i=1}^n Z_i \psi_i(\boldsymbol{p})$$

■ FINITE ELEMENT APPROXIMATION OF SPDES

Goal: Find an approximation of the solution to: $P(-\Delta)^{1/2} \mathcal{I} = \mathcal{W}$

$$P(-\Delta)^{1/2}\mathcal{Z} = \mathcal{W}$$

Triangulation of the domain

Piecewise linear approximation of the solution

$$\boxed{ \mathcal{Z}(\boldsymbol{p}) \approx \widehat{\mathcal{Z}}(\boldsymbol{p}) = \sum_{i=1}^{n} Z_i \psi_i(\boldsymbol{p}) }$$

The weights $\mathbf{Z} = (Z_1, \dots, Z_n)$ form a (centered) Gaussian vector whose **precision matrix** $\mathbf{Q}_{\mathcal{I}}$ has an explicit formula

 \rightarrow Depends on known sparse matrices

■ GAUSSIAN MARKOV RANDOM FIELD APPROXIMATION

Goal: Find an approximation of the solution to: $|P(-\Delta)|^{1/2} \mathcal{I} = \mathcal{W}|$

o:
$$\left| \frac{P(-\Delta)^{1/2}}{Z} = \mathcal{W} \right|$$

Mass matrix (\rightarrow Diagonal)

$$m{C} = egin{pmatrix} \langle \psi_1, 1
angle & & & & \\ & & \ddots & & \\ & & & \langle \psi_n, 1
angle \end{pmatrix}$$
 and set

Stiffness matrix (\rightarrow Sparse)

$$m{R} = egin{pmatrix} \ddots & \vdots & \ddots \\ & \langle
abla \psi_i,
abla \psi_j
angle \\ \ddots & \vdots & \ddots \end{pmatrix}$$

$$S = C^{-1/2}RC^{-1/2}$$

The weights $\mathbf{Z} = (Z_1, \dots, Z_n)$ satisfy form a (centered) Gaussian vector whose **precision matrix** $\mathbf{Q}_{\mathcal{I}}$

$$oxed{oldsymbol{Q}_{\mathcal{Z}} = oldsymbol{C}^{1/2} oldsymbol{P}(oldsymbol{S}) oldsymbol{C}^{1/2}}$$

 $\rightarrow Q_{\mathcal{I}}$ is sparse (when deg P is relatively small)

■ STRAIGHTFORWARD EXTENSIONS

Non-stationarity

Define SPDE with spatially-varying coefficients

$$(\kappa^2(\cdot) - \operatorname{div}(H(\cdot)\nabla))^{\alpha} \mathcal{Z} = \mathcal{W}$$

Simulation of non-stationary GP using the SPDE approach

Non-Euclidean domain

Define SPDE on Riemannian manifolds (\mathfrak{D},g)

$$P(-\Delta_g)\mathcal{Z} = \mathcal{W}$$

where $-\Delta_g$ is the Laplace–Beltrami operator

Simulations of GPs on smooth surfaces using the SPDE approach

STRAIGHTFORWARD EXTENSIONS

Galerkin-Chebyshev approximation of random fields (Pereira et al., 2022; Lang and Pereira, 2021)

Field

$$\mathcal{Z} = \gamma(\mathcal{L})\mathcal{W},$$

where
$$|\gamma(\lambda)| = \mathcal{O}_{\lambda \to \infty}(|\lambda|^{-\beta})$$
 with $\beta > d/4$

Finite element approximation

$$\mathcal{Z} = \sum_{i=1}^{n} Z_i \psi_i$$

Weights of the approximation

$$oxed{Z=C^{-1/2}\gamma(S)W}, \quad ext{ where } S=C^{-1/2}RC^{-1/2}$$

$$C = \left[\langle \psi_i, \psi_j \rangle_{L^2(\mathcal{M})} \right], R = \left[\langle \mathcal{L}\psi_i, \psi_j \rangle_{L^2(\mathcal{M})} \right]$$

→ Computed with polynomial approximation

■ BACK TO OUR INITIAL QUESTION

Recall the physical constraint on the Qol

$$\mathcal{L}Z = u$$

with $\mathcal L$ a linear differential operator, u a source term, and additional boundary/initial conditions

- lacktriangle Idea: Replace the right-hand side with a GP ${\mathfrak U}$ (usually Gaussian white noise) and solve the SPDE using finite element / volume method
- Result: Finite element approximation of the SPDE solution

$$\mathcal{Z}(oldsymbol{p})pprox\widehat{\mathcal{Z}}(oldsymbol{p})=\sum_{i=1}^n Z_i\psi_i(oldsymbol{p})$$

weights $Z = (Z_1, \dots, Z_n)$ form a (centered) Gaussian vector with precision matrix $Q_{\mathbb{Z}}$ depending on the \mathcal{L}

■ EXAMPLE: SOME SIMPLE TRANSPORT PHENOMENA

$$\frac{\partial z}{\partial t} + \vec{v} \cdot \nabla z = 0$$

$$\begin{array}{l} {\rm Diffusion} \\ \frac{\partial z}{\partial t} - \Delta z = 0 \end{array}$$

$$\frac{\partial z}{\partial t} + \vec{v} \cdot \nabla z - \Delta z = 0$$

■ EXAMPLE: DIFFUSION PROCESS

Physical constraint on the QoI:

$$\mathcal{L}Z = \frac{\partial Z}{\partial t} + (\kappa^2 - \Delta)^{\alpha/2} Z = u$$

with u a source term, and additional boundary/initial conditions

 \rightarrow Consider the diffusion SPDE (Bakka et al., 2020; Rayner et al., 2020):

$$\frac{\partial \mathcal{Z}}{\partial t} + (\kappa^2 - \Delta)^{\alpha/2} \mathcal{Z} = \tau \mathcal{W}_T \otimes \mathcal{W}_S,$$

where $\mathcal{W}_T \otimes \mathcal{Y}_S$ is a white noise in time and colored noise in space

■ EXAMPLE: ADVECTION-DIFFUSION PROCESS

Physical constraint on the QoI:

$$\mathcal{L}Z = \frac{\partial Z}{\partial t} + \frac{1}{c} \left((\kappa^2 - \Delta)^{\alpha} Z + \gamma \cdot \nabla \mathcal{Z} \right) = u$$

with u a source term, and additional boundary/initial conditions

→ Consider the advection-diffusion SPDE:

$$\frac{\partial \mathcal{Z}}{\partial t} + \frac{1}{c} \left((\kappa^2 - \Delta)^{\alpha} \mathcal{Z} + \gamma \cdot \nabla \mathcal{Z} \right) = \frac{\tau}{\sqrt{c}} \mathcal{W}_T \otimes \mathcal{Y}_S$$

where $W_T \otimes Y_S$ is a white noise in time and colored noise in space, and γ an advection vector

- Clouding covering estimation (Clarotto et al., 2022)
- Precipitation and tropical thunderstorm modeling (Sigrist et al., 2015; Liu et al., 2022)
- Air pollution (Chen et al., 2023)
- Ocean salinity data (Berild and Fuglstad, 2024)

■ EXAMPLE: ADVECTION-DIFFUSION PROCESS

Physical constraint on the QoI:

$$\mathcal{L}Z = \frac{\partial Z}{\partial t} + \frac{1}{c} ((\kappa^2 - \Delta)^{\alpha} Z + \gamma \cdot \nabla \mathcal{Z}) = u$$

with u a source term, and additional boundary/initial conditions

ightarrow Application: Model pollutant dispersion at a global scale : L. Clarotto's talk [O.A4.1]

Solution of an advection-diffusion SPDE with advection defined by wind data (ECMWF Atmospheric Composition Reanalysis 4, every 3 hours, 01/12/2024 - 03/12/2024)

■ EXAMPLE: COUPLED SYSTEM OF SPDE

Project with the French National Agency for Nuclear Waste : Study of deformations underground nuclear waste storage galleries

- Qol : Temperature and Deformations over gallery surface
- Low number of captors (32 per section, max)

Physical constraints on the QoIs : Temperature T, Radial Deformation Z

$$\begin{cases} \mathcal{L}_T T &= \frac{\partial Z}{\partial t} - \alpha \Delta T = u_T \\ \mathcal{L}_Z Z &= \Delta^2 Z \beta_1 \Delta Z - \beta_2 \Delta T = u_Z \end{cases}$$

with u_T, u_Z (unknown) source terms, and additional boundary/initial conditions

■ OUTLINE

I. Covariance-based approaches

II. SPDE approach

III. Challenges in inference

■ COVARIANCE BASED APPROACHES

Vector of observations $oldsymbol{Y}$ can be expressed as

$$Y = Z + \tau \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, I)$$

where Z is a Gaussian vector \Rightarrow Gaussian likelihood expensive too compute!

$$L(\boldsymbol{\theta}) = \frac{1}{2} \log |\boldsymbol{\Sigma}(\boldsymbol{\theta}) + \tau^2 \boldsymbol{I}| - \frac{1}{2} (\boldsymbol{Y} - \boldsymbol{\mu}(\boldsymbol{\theta}))^T (\boldsymbol{\Sigma}(\boldsymbol{\theta}) + \tau^2 \boldsymbol{I})^{-1} (\boldsymbol{Y} - \boldsymbol{\mu}(\boldsymbol{\theta})) + \text{ Constant}$$

Several approaches to speed up computations

- Covariance tapering → Sparse matrices (Kaufman et al., 2008)
- Low-rank approximations / Inducing points methods (Hensman et al., 2013; Datta et al., 2016)
- Vecchia approximation (Katzfuss and Guinness, 2021)
- → The GP distribution is approximated to allow inference

■ SPDE-BASED APPROACHES

Vector of observations $oldsymbol{Y}$ can be expressed as

$$Y = AZ + \tau \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, I)$$

where Z is a Gaussian vector, A a design matrix \Rightarrow Gaussian likelihood expensive too compute!

$$L(\boldsymbol{\theta}) = \frac{1}{2} \log |\boldsymbol{A}\boldsymbol{Q}(\boldsymbol{\theta})\boldsymbol{A}^T + \tau^2 \boldsymbol{I}| - \frac{1}{2} (\boldsymbol{Y} - \boldsymbol{\mu}(\boldsymbol{\theta}))^T (\boldsymbol{A}\boldsymbol{Q}(\boldsymbol{\theta})\boldsymbol{A}^T + \tau^2 \boldsymbol{I})^{-1} (\boldsymbol{Y} - \boldsymbol{\mu}(\boldsymbol{\theta})) + \text{ Constant }$$

Several approaches to speed up computations

- lacktriangle Restriction on parameters / SPDEs considered ightarrow Sparse matrices (Lindgren et al., 2011)
- Stochastic trace estimation (Pereira et al., 2022)
- Design of preconditionners (Antil and Saibaba, 2024)
- → The GP distribution is approximated to allow inference

Setting: Likelihood evaluations / Inference can be cumbersome, but simulating is often easy \rightarrow Can we "learn", with neural networks, ways to infer model parameters from spatial data?

Two useful remarks

- lacktriangle By sampling from some prior $heta \sim \pi(heta)$ and then simulating data $m{Y} \sim \pi(m{Y}| heta)$
 - ightarrow We can create (many!) samples $(m{Y}; heta)$ from the joint distribution $\pi(m{Y}, heta)$

$$(Y;\theta)$$

 We can approximate (expectations of) KL-divergences involving the posterior distribution using these samples

Setting: Likelihood evaluations / Inference can be cumbersome, but simulating is often easy \rightarrow Can we "learn", with neural networks, ways to infer model parameters from spatial data?

First approach: Learn a way to approximate the likelihood of the model

(Dutta et al., 2016; Walchessen et al., 2024)

- Use Likelihood-to-Evidence ratio $\pi(Y|\theta)/\pi(Y)$ to link likelihood to a classification probability
 - ightarrow Only need to learn a classifier
- Learn variational approximation of likelihood $L(\theta; \mathbf{Y}) \approx q(\theta; \kappa(\mathbf{Y}))$

Setting: Likelihood evaluations / Inference can be cumbersome, but simulating is often easy \rightarrow Can we "learn", with neural networks, ways to infer model parameters from spatial data?

Second approach: Learn a way to get approximate inferred parameters

(Mnih and Gregor, 2014; Lenzi et al., 2023; Sainsbury-Dale et al., 2024)

- Given the pairs (Y, θ) , learn a functional relationship between the pair by minimizing a loss function
- Learn variational approximation of the posterior distribution $\pi(\theta|\mathbf{Y}) \approx q(\theta; \kappa(\mathbf{Y}))$ by minimizing expected KL-divergences

M. Pereira - Physics-aware models with SPDEs: Models and Perspectives

Setting: Likelihood evaluations / Inference can be cumbersome, but simulating is often easy \rightarrow Can we "learn", with neural networks, ways to infer model parameters from spatial data?

Third approach: Generative model approach

- Idea: Some generative models are "easy" to condition to observations and naturally include variability of prior distribution
- Learn a neural approximation of whole data distribution $\pi(\mathbf{Z}) = \int \pi(\mathbf{Z}, \theta) d\theta$ and use conditioning algorithm to get samples $\pi(\mathbf{Y}|\theta)$
- Application with Diffusion Models (Cardoso and Pereira, 2025) → G. V. Cardoso's talk [O.A4.3]
 M. Pereira Physics-aware models with SPDEs: Models and Perspectives

■ TAKEAWAY MESSAGES

- Many tools to incorporate (PDE-based) physical constraints into GP models for spatial statistics
 - Through derivation of covariance kernels
 - By solving SPDEs
- Still work to do for practical application
 - Inference can be challenging
 - Hope through ML based approaches

THANK YOU FOR YOUR ATTENTION!

https://mike-pereira.github.io/

- Antil, H. and Saibaba, A. K. (2024). Efficient algorithms for bayesian inverse problems with whittle–matérn priors. *SIAM Journal on Scientific Computing*, 46(2):S176–S198.
- Bakka, H., Krainski, E., Bolin, D., Rue, H., and Lindgren, F. (2020). The diffusion-based extension of the Matérn field to space-time.
- Berild, M. O. and Fuglstad, G.-A. (2024). Non-stationary spatio-temporal modeling using the stochastic advection–diffusion equation. *Spatial Statistics*, 64:100867.
- Berliner, L. M. (2003). Physical-statistical modeling in geophysics. *Journal of Geophysical Research: Atmospheres*, 108(D24).
- Cardoso, G. V. and Pereira, M. (2025). Predictive posterior sampling from non-stationnary gaussian process priors via diffusion models with application to climate data. *arXiv* preprint *arXiv*:2505.24556.
- Chen, J., Miao, C., Yang, D., Liu, Y., Zhang, H., and Dong, G. (2023). Estimation of fine-resolution pm2.5 concentrations using the inla-spde method. *Atmospheric Pollution Research*, 14(7):101781.

- Clarotto, L., Allard, D., Romary, T., and Desassis, N. (2022). The spde approach for spatio-temporal datasets with advection and diffusion. arXiv preprint arXiv:2208.14015.
- Datta, A., Banerjee, S., Finley, A. O., and Gelfand, A. E. (2016). On nearest-neighbor gaussian process models for massive spatial data. *Wiley Interdisciplinary Reviews: Computational Statistics*, 8(5):162–171.
- Dutta, R., Corander, J., Kaski, S., and Gutmann, M. U. (2016). Likelihood-free inference by ratio estimation. arXiv preprint arXiv:1611.10242.
- Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian processes for big data. arXiv preprint arXiv:1309.6835.
- Jin, X., Ni, J., et al. (2019). Physics-based gaussian process for the health monitoring for a rolling bearing. *Acta astronautica*, 154:133–139.
- Katzfuss, M. and Guinness, J. (2021). A general framework for vecchia approximations of gaussian processes. *Statistical Science*, 36(1):124–141.

- Kaufman, C. G., Schervish, M. J., and Nychka, D. W. (2008). Covariance tapering for likelihood-based estimation in large spatial data sets. *Journal of the American Statistical Association*, 103(484):1545–1555.
- Lang, A. and Pereira, M. (2021). Galerkin–Chebyshev approximation of Gaussian random fields on compact Riemannian manifolds. arXiv preprint arXiv:2107.02667.
- Lenzi, A., Bessac, J., Rudi, J., and Stein, M. L. (2023). Neural networks for parameter estimation in intractable models. *Computational Statistics & Data Analysis*, 185:107762.
- Lindgren, F., Bolin, D., and Rue, H. (2022). The SPDE approach for Gaussian and non-Gaussian fields: 10 years and still running. *Spatial Statistics*, 50:100599.
- Lindgren, F., Rue, H., and Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian markov random fields: the stochastic partial differential equation approach. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 73(4):423–498.
- Liu, X., Yeo, K., and Lu, S. (2022). Statistical modeling for spatio-temporal data from stochastic convection-diffusion processes. *Journal of the American Statistical Association*, 117(539):1482–1499.

- López-Lopera, A. F., Durrande, N., and Alvarez, M. A. (2019). Physically-inspired gaussian process models for post-transcriptional regulation in drosophila. *IEEE/ACM transactions on computational biology and bioinformatics*, 18(2):656–666.
- Mnih, A. and Gregor, K. (2014). Neural variational inference and learning in belief networks. In *International Conference on Machine Learning*, pages 1791–1799. PMLR.
- Pereira, M., Desassis, N., and Allard, D. (2022). Geostatistics for large datasets on riemannian manifolds: A matrix-free approach. *Journal of Data Science*, 20(4):512–532.
- Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2017). Machine learning of linear differential equations using gaussian processes. *Journal of Computational Physics*, 348:683–693.
- Rayner, N. A., Auchmann, R., Bessembinder, J., Brönnimann, S., Brugnara, Y., Capponi, F., Carrea, L., Dodd, E. M., Ghent, D., Good, E., et al. (2020). The eustace project: Delivering global, daily information on surface air temperature. *Bulletin of the American Meteorological Society*, 101(11):E1924–E1947.
- Rozanov, J. A. (1977). Markov random fields and stochastic partial differential equations. *Mathematics of the USSR-Sbornik*, 32(4):515.

- Sainsbury-Dale, M., Zammit-Mangion, A., and Huser, R. (2024). Likelihood-free parameter estimation with neural bayes estimators. *The American Statistician*, 78(1):1–14.
- Sigrist, F., Künsch, H. R., and Stahel, W. A. (2015). Stochastic partial differential equation based modelling of large space—time data sets. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 77(1):3–33.
- Walchessen, J., Lenzi, A., and Kuusela, M. (2024). Neural likelihood surfaces for spatial processes with computationally intensive or intractable likelihoods. *Spatial Statistics*, 62:100848.
- Whittle, P. (1954). On stationary processes in the plane. Biometrika, pages 434-449.
- Wikle, C. K., Milliff, R. F., Nychka, D., and Berliner, L. M. (2001). Spatiotemporal hierarchical bayesian modeling tropical ocean surface winds. *Journal of the american statistical association*, 96(454):382–397.
- Zhang, J., Liu, C., and Gao, R. X. (2022). Physics-guided gaussian process for hvac system performance prognosis. *Mechanical Systems and Signal Processing*, 179:109336.