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m DATA FROM PHYSICAL PROCESSES

Many applications of Geostatistics to data linked to physical processes

= Climate
— Interpolation of climate/weather variables (Temperature,
Precipitation, Geotrophic winds,...) —_—

— Global scale data assimilation

: Daily Sea Surf
— Stochastic Generators atly >ea shrtace

Temperature (Source:
= Environment NOOA)

— Diffusion of pollutant in soils
— Transport of pollutant in atmosphere, Air quality monitoring
= And other fields

— Disease mapping
— Seismic wave mapping

— Simple (PDE-based) physical can be used to describe the corresponding Sulfate dispersion in the
variables atmosphere (Source: NASA)
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m DATA FROM PHYSICAL PROCESSES

Examples of “physical” models

= Diffusion phenomena (eg. Temperature): Heat equation

07
— —0AZ = S
ot B
Daily Sea Surface
= Transport phenomena (eg. Concentration of pollutant in the air): Temperature (Source:
Advection-Diffusion equation NOOA)
07
— -VZ —-0AZ =u
ot T
= Wave propagation : Wave equation
07
— —0AZ =0
ot2

Sulfate dispersion in the

— Can we incorporate this a priori knowledge into geostatistical modeling atmosphere (Source: NASA)
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B SETTING

Quantity of interest (Qol) Physical variable Z over a spatial /spatio-temporal domain D

Data (Noisy) Observations Y (z;) of Z at locations (x1,...,zn,) € D
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B SETTING

Quantity of interest (Qol) Physical variable Z over a spatial /spatio-temporal domain D
Data (Noisy) Observations Y (z;) of Z at locations (z1,...,2nx,) € D
Goal (Probabilistic) Predictions of the Qol Z at unobserved locations

— Need a probabilistic model on Y that accounts for spatial “structure” of Y
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B SETTING

Quantity of interest (Qol) Physical variable Z over a spatial /spatio-temporal domain D
Data (Noisy) Observations Y (z;) of Z at locations (z1,...,2n,) € D
Goal (Probabilistic) Predictions of the Qol Z at unobserved locations
— Need a probabilistic model on Y that accounts for spatial “structure” of Y

— If possible, account for the fact that the Qol arises from a physical model

L7 =u on D
BZ =ug ondD

where £ is a linear (differential) operator, and u is a source term,
and B is a linear operator defining boundary/initial conditions

Assumption: Linear well-posed PDE problems
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B SPATIO-TEMPORAL MODELING WITH GAUSSIAN PROCESSES

Gaussian Process (GP) Qol across space
Z:{Z(z) : x € D} Realization Z:{Z(z):x €D}
High correlation High “similarity”

— Allows to model non i.i.d data while only specifying the first two moments
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Gaussian Process Z Expectation / Deterministic effects Residuals / Random effects
Deterministic trend p(t, s) Zero-mean and characterized by a
(eg. Regression over some covariates) covariance kernel Cy, :

’ Cov(Z(z), Z(z")) = Cx(z, ') ‘
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B SETTING

Qol Physical variable Z defined across time [0, 7] and/or D
Data (Noisy) Observations Y = (Y (x1),...,Y (zn,))T of Z at z1,..., 25, €D
Model Qol Z — GP Z and Data Y — Y where
‘ Y(x;) = 2(x;) + Tei |,

— €1,...,6N, ~ N(0,1) iid noise

ie{l,....k}

Goal (Probabilistic) Predictions of Y at unobserved locations

— Vector of observations Y can be written

Y -zir) eoN0T)

where Z = (2(1),...,2(x,))T is a Gaussian vector = Explicit likelihood:
1 1 _
L(6) = 3 1og |S(0) + 71| = S(Y — u(8))" (£(0) +7°I) Y(Y — () + Constant

where = E[Z] and 3 = [Cz(xk’xl)]lgk,lgND
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B SETTING

Qol Physical variable Z defined across time [0, 7] and/or D
Data (Noisy) Observations Y = (Y (x1),...,Y (xn,))? of Z at q,...,2n, €D
Model Qol Z — GP Z and Data Y — Y where
‘ Y(xi) = Z(xs) + 724 |,
— €1,...,6Nnp, ~ N(0,1) iid noise

ie{l,... k}

Goal (Probabilistic) Predictions of Y at unobserved locations

— Closed-form conditional distributions (Z(z)|Y") ~ N(m(z'), o%(a")) where
Np

m(z') = Z (= —|—72I)71Y]k Co(zg, "), with ¥ = [Cz(xk’wl)]lgk,lgND
k=
1 Np Np
o?(z') = Cy(z',2) ZZC’Z o) (B4 7°T) 1]kl Co(z1,2)
k=1 1=1
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m OUTLINE

I. Covariance-based approaches



PHYSICALLY-MOTIVATED MEAN

= First possibility: Set mean of GP as output of physical model

1.0

05

0.0

-1.0

Mean depending on physical model

Variable of interest Y'(s,t) (s, )

Residuals Z(s,t)

= Examples: Regression over several physical model outputs

= Residuals often chosen with simple structure: fully independent or independent in time,
stationary in space

m Ex: Applications in predictive maintenance (Zhang et al., 2022; Jin et al., 2019)
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PHYSICALLY-CONSTRAINED COVARIANCE

= Second possibility: Constrain the covariance kernel to yield physically realistic GPs

0.6
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Residuals with complex

Variable of interest Y'(s,t) Simple mean (often zero) u(s,t) spatio-temporal correlations Z (s, #)

® Question: How do we pick the covariance kernel?
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B KERNEL MAGIC

Consider a GP Z with covariance kernel
Cz(z,y) = Cov(Z(z), Z(v))

= (Under some regularity assumptions) The derivative of a GP is a GP, and

0 0 oC

Cov( - 2(0). 5-20) = -5

or aaiy (Ivy)

= More generally, when applying a linear operator to a GP, we get a GP :
Cov(L22(x), £yZ(y)) = (£2£,C)(z,y)
Moreover, the “vector” (£Z,2) is also a GP

— Use this to “constraint” kernel into incorporating physical constraints
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B COVARIANCE KERNEL WITH PHYSICAL CONSTRAINTS

Recall the physical constraint on the Qol
LZ =u

with £ a linear differential operator, u a source term, and additional boundary/initial conditions
= |dea: Replace Z by a GP Z with a fixed kernel Cy, (eg. Cz(z,y) = exp(—|jz — y|*)) :
LZ=U

= The kernels of U and of the pair (U, Z) (cross-covariance) can be computed from £ and Cy:
Cu(x,y) :LrLyCZ(x,y)a CU,Z(xay) :LmCZ(xay)
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B COVARIANCE KERNEL WITH PHYSICAL CONSTRAINTS

Recall the physical constraint on the Qol
LZ =u

with £ a linear differential operator, u a source term, and additional boundary/initial conditions

= |dea: Replace Z by a GP Z with a fixed kernel Cy (eg. Cx(z,y) = exp(—||z — y||?)) :
LZ=U
= The kernels of U and of the pair (U, Z) (cross-covariance) can be computed from £ and Cy:
Culz,y) = L,L0,Cx(x,y), Cuzlz,y)=LCx(z,y)
= Then, we can “enforce” the PDE by adequately conditioning the pair (Z,U)

— Create “data” to enforce (or not) the right-hand side : U(y;) = w(y;), y1,-.-,yp € D
— Create “data” to enforce potential initial/boundary conditions
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B COVARIANCE KERNEL WITH PHYSICAL CONSTRAINTS

Recall the physical constraint on the Qol
LZ =u

with £ a linear differential operator, u a source term, and additional boundary/initial conditions

® |dea: Replace Z by a GP Z with a fixed kernel Cy (eg. Cz(z,y) = exp(—|jz — y||?)) :
LZ=U

= The kernels of U and of the pair (U, Z) (cross-covariance) can be computed from £ and Cy:

Cu(z,y) = L, £,02(x,y), Cuz(z,y)=L,Cx(z,y)

= Then, we can “enforce” the PDE by adequately conditioning the pair (Z,U)
— Create “data” to enforce (or not) the right-hand side : U(y;) = u(y;), y1,...,yp € D
— Create “data” to enforce potential initial /boundary conditions

= Finally, compute a posteriori distribution of Z (and of U !) given “real” data Y and artificial
(PDE-enforcing) data
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B COVARIANCE KERNEL WITH PHYSICAL CONSTRAINTS

Recall the physical constraint on the Qol
LZ =u

with £ a linear differential operator, u a source term, and additional boundary/initial conditions
Assumption : We can compute the solution operator £~!: Source term s Solution of the PDE (eg.

Green's function, spectral approach)

= Alternative approach: Fix the kernel of U instead (eg. Cu(z,y) = exp(—||z — y||*)) and use
L£Z2=U « 2=L7"U
where £~! denotes the solution operator associated = The kernels of Z and of the pair (U, Z)
(cross-covariance) can be computed from £~ and Cx,
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B COVARIANCE KERNEL WITH PHYSICAL CONSTRAINTS

Recall the physical constraint on the Qol
LZ =u

with £ a linear differential operator, u a source term, and additional boundary/initial conditions

Assumption : We can compute the solution operator £~!: Source term s Solution of the PDE (eg.
Green's function, spectral approach)

= Alternative approach: Fix the kernel of U instead (eg. Cy(z,y) = exp(—||z — y||?)) and use
LZ2=U <+ 2=L7"U
where £~ denotes the solution operator associated = The kernels of Z and of the pair (U, Z)
(cross-covariance) can be computed from £~ and Cy,
= Note that
— PDE parameters can now be part of the inference: Part of kernel parameters
— Putting a prior on U can be seen as a way of dealing with unknown source terms

— Enforce PDE constraint on Z or on the pair (Z,U) (— Physics-based multivariate model)
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B COVARIANCE KERNEL WITH PHYSICAL CONSTRAINTS

Recall the physical constraint on the Qol
L7 =u

with £ a linear differential operator, w a source term, and additional boundary/initial conditions

Assumption : We can compute the solution operator £~1: Source term + Solution of the PDE (eg.

Green's function, spectral approach)

= Examples of applications
— Approximate solutions of PDEs (Raissi et al., 2017)

— Estimation of geostrophic and tropical winds (Berliner, 2003; Wikle et al., 2001) — Gradient
constraints on components

— Concentrations of proteins in drosophila (Lépez-Lopera et al., 2019) — Reaction diffusion
equation
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m COMMENTS ABOUT THE COVARIANCE-BASED APPROACH

Starting from the relation £Z = U

Challenges when putting the GP prior on Z

= The regularity of Z depends on the choice of Cz, (eg. Gaussian
kernel — Infinitely differentiable paths)

= Need to come up with sensible kernels for the Qol: Challenging
when

— Non-stationarity / Transport phenomena
— Non-Euclidean geometries for the spatial domain

Challenges when putting the GP prior on U

. . . . S : NASA
= The solution operator is not rarely available in closed-form (Source )

— Alternative approach: Solve the Stochastic PDE numerically
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m OUTLINE

Il. SPDE approach



m THE SPDE APPROACH

Basic idea: if Z is an isotropic Markovian field over R?, then it is equivalently characterized by
(Whittle, 1954; Rozanov, 1977):

Spectral density I'y = .7 [Cy)] Stochastic partial differential equation (SPDE)

1
T ¢ RY s — — P(— A2z =W
= E€RT - Fe (~4)

= W: Gaussian white noise
= P(—A)V22:= 51 [e» /P(IED) x Z[2](€)]

where P is a polynomial, strictly positive over R
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m THE SPDE APPROACH

Basic idea: if Z is an isotropic Markovian field over R?, then it is equivalently characterized by
(Whittle, 1954; Rozanov, 1977):

Spectral density I';, = .#[Cy] Stochastic partial differential equation (SPDE)

P(— A2z =W

1
Iy : RE s — —
2 £ R B

= W: Gaussian white noise

« P(-8)22:= 7 e~ P x Z12)(6)]

where P is a polynomial, strictly positive over R

— In particular, if P(x) = (k% + 2)%, i.e. with the SPDE
(K,2 - A)a/2z —W \ — : S
then Z has a Matérn covariance function BREE TRE YR

(5l 1) 5, (sl1Bll). (v = a — d/2)

0_2
)
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m THE SPDE APPROACH

Basic idea: if Z is an isotropic Markovian field over R?, then it is equivalently characterized by
(Rozanov, 1977):

Spectral density Stochastic partial differential equation (SPDE)
1 P(—A)Y2Z2 =W
Iy :éeRi¥s ——
P([1€11%)

= W: Gaussian white noise
" (=822 = 7 g PP x Z(2]()]

where P is a polynomial, strictly positive over R

SPDE approach (Lindgren et al., 2011, 2022)
= See GPs as solutions of SPDEs (rather than through their covariance kernel)

= Solve SPDE numerically with finite elements (or finite volume) method to sample GP /
characterize its distribution
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m FINITE ELEMENT APPROXIMATION OF SPDES

Goal: Find an approximation of the solution to: | P(—A)Y/22 =W

Triangulation of the domain Piecewise linear approximation of the solution

2(p) ~ Z(p) = Z Zbi(p)
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m FINITE ELEMENT APPROXIMATION OF SPDES

Goal: Find an approximation of the solution to: | P(—A)Y/22 =W

Triangulation of the domain Piecewise linear approximation of the solution

2(p) ~ 2(p) = 3_ Ziti(p)

The weights Z = (Z1, ..., Z,) form a (centered) Gaussian vector whose precision matrix Qz has an
explicit formula
— Depends on known sparse matrices
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B GAUSSIAN MARKOV RANDOM FIELD APPROXIMATION

Goal: Find an approximation of the solution to: | P( — A2 =W

Mass matrix (— Diagonal) Stiffness matrix (— Sparse)
<¢17 1)
= R = (Vabs, Viby)
(¢n, 1) :
and set
|$=Cc 2 RC12|
The weights Z = (Z4, ..., Z,) satisfy form a (centered) Gaussian vector whose precision matrix Q2.

QZ — Cl/2p(s)cl/2

— Q2 is sparse (when deg P is relatively small)

M. Pereira — Physics-aware models with SPDEs: Models and Perspectives



B STRAIGHTFORWARD EXTENSIONS

Non-stationarity

Define SPDE with spatially-varying coefficients
(k*() = div(H()V))*2 =W

o

Simulation of non-stationary GP using the SPDE approach

Non-Euclidean domain

Define SPDE on Riemannian manifolds (D, g)
P(-A)Z =W

where —A is the Laplace—Beltrami operator

s O { >
sy, e
ﬁ’_.. A, \ < - ’/
LR

L Y
lnf S "’;z‘
2
% \ !‘. N
e .
vt S 7
a2 P o
‘ Y l'v ¥ J; /
ORI L))
Simulations of GPs on smooth surfaces using the SPDE
approach
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B STRAIGHTFORWARD EXTENSIONS

Galerkin-Chebyshev approximation of random fields (Pereira et al., 2022; Lang and Pereira, 2021)
Field
Z=y(L)W,
where [7(\)] = Ox_oo (A 7#) with 8 > d/4

Finite element approximation

Z = z": Zip;
i—1

Weights of the approximation

Z=C'?4(S)W | where S =C~'/?RC™'/?
C = [(Vi, V)20 ] » B = [(Li, ) 2 ()]

— Computed with polynomial approximation
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m BACK TO OUR INITIAL QUESTION

Recall the physical constraint on the Qol
L7 =u

with £ a linear differential operator, w a source term, and additional boundary/initial conditions

= |dea: Replace the right-hand side with a GP U (usually Gaussian white noise) and solve the
SPDE using finite element / volume method

® Result: Finite element approximation of the SPDE solution

2(p) ~ 2(p) = Z Zii(p)

weights Z = (Zy,...,Z,) form a (centered) Gaussian vector with precision matrix Qz,
depending on the £
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B EXAMPLE: SOME SIMPLE TRANSPORT PHENOMENA

9 Advection 5 Diffusion gdvection + Diffusion
z z z

oI, I v o 92 Ax= 7 Vs Ay —
at+v Vz=0 2 z=0 at+v Vz—Az=0
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m EXAMPLE: DIFFUSION PROCESS

Physical constraint on the Qol:
Z
©Z= %7 + (K2 = A)PZ=u

with u a source term, and additional boundary/initial conditions

— Consider the diffusion SPDE (Bakka et al., 2020; Rayner et al., 2020):

0Z
= 4+ (k2 = A)Y2Z = TWp @ Wg,
ot
where Wr ® Y is a white noise in time and colored noise in space
1=0 (std-dev=1) | 1=0 (std-dev=1) 1=0 (std-dev=1) 4
/£ y \
N // ‘:\
y \
\\\ /,,,/ g r ) - = A /
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B EXAMPLE: ADVECTION-DIFFUSION PROCESS

Physical constraint on the Qol:
0z 1, , o

with u a source term, and additional boundary/initial conditions

— Consider the advection-diffusion SPDE:

O (W~ A7ty V) = ZWre s
where W ® Yg is a white noise in time and colored noise in space, and « an advection vector
I T = Clouding covering estimation (Clarotto et al., 2022)
* Baet B l:j ® Precipitation and tropical thunderstorm modeling (Sigrist et al., 2015; Liu
: s " S, k"; et al., 2022)
E o A i = Air pollution (Chen et al., 2023)
: L A = Ocean salinity data (Berild and Fuglstad, 2024)
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m EXAMPLE: ADVECTION-DIFFUSION PROCESS

Physical constraint on the Qol:
0z 1, , o
LZZE'FE((F& —A) Z+")/VZ):U

with u a source term, and additional boundary/initial conditions

— Application: Model pollutant dispersion at a global scale : L. Clarotto’s talk [0.A4.1]

t=0 t=0 t=0

Solution of an advection-diffusion SPDE with advection defined by wind data (ECMWF Atmospheric Composition
Reanalysis 4, every 3 hours, 01/12/2024 - 03/12/2024)
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m EXAMPLE: COUPLED SYSTEM OF SPDE

Project with the French National Agency for Nuclear Waste : Study of deformations
underground nuclear waste storage galleries

= Qol : Temperature and Deformations over gallery surface

= Low number of captors (32 per section, max)

Physical constraints on the Qols : Temperature T', Radial Deformation Z
LrT =92 — aAT = ur
Lzz :AQZﬂlAZ—,BzAT:U,Z

with ur, uz (unknown) source terms, and additional boundary/initial conditions

Sl o

Example of joint simulation of Temperature and Deformation with the SPDE approach
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m OUTLINE

I1l. Challenges in inference



m COVARIANCE BASED APPROACHES

Vector of observations Y can be expressed as
Y=Z+r71e, e~N(0,1I)

where Z is a Gaussian vector = Gaussian likelihood expensive too compute!

L(9) = %log 5(6) + 21| - %(Y — (6))T(2(8) + 1) " (Y — u(6)) + Constant

Several approaches to speed up computations
= Covariance tapering — Sparse matrices (Kaufman et al., 2008)
= | ow-rank approximations / Inducing points methods (Hensman et al., 2013; Datta et al., 2016)
® Vecchia approximation (Katzfuss and Guinness, 2021)

— The GP distribution is approximated to allow inference
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m SPDE-BASED APPROACHES

Vector of observations Y can be expressed as
Y =AZ +71e, e~N(0,I)

where Z is a Gaussian vector, A a design matrix = Gaussian likelihood expensive too compute!

L(6) = %log |AQ(0)AT + 21| — %(Y — 1(6))"(AQ()A” +72T) (Y — u(6)) + Constant

Several approaches to speed up computations
= Restriction on parameters / SPDEs considered — Sparse matrices (Lindgren et al., 2011)
= Stochastic trace estimation (Pereira et al., 2022)
= Design of preconditionners (Antil and Saibaba, 2024)

— The GP distribution is approximated to allow inference
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®m MACHINE LEARNING TO THE RESCUE?

Setting: Likelihood evaluations / Inference can be cumbersome, but simulating is often easy
— Can we “learn”, with neural networks, ways to infer model parameters from spatial data?

Two useful remarks

= By sampling from some prior § ~ () and then simulating data Y ~ 7(Y'|6)
— We can create (many!) samples (Y; ) from the joint distribution 7 (Y, 6)

(Y;0)

= We can approximate (expectations of) KL-divergences involving the posterior distribution using
these samples
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®m MACHINE LEARNING TO THE RESCUE?

Setting: Likelihood evaluations / Inference can be cumbersome, but simulating is often easy
— Can we “learn”, with neural networks, ways to infer model parameters from spatial data?

First approach: Learn a way to approximate the likelihood of the model
(Dutta et al., 2016; Walchessen et al., 2024)

-+
..H ‘*—, ]
o “" "" Neural
K o Network
+ Ty
L IS

Approximate Likelihood

Observations Y Function
of spatialized variable 6 ~L6;Y)

= Use Likelihood-to-Evidence ratio 7(Y'|0)/7(Y) to link likelihoood to a classification probability
— Only need to learn a classifier
= | earn variational approximation of likelihood L(6;Y) = ¢q(0; k(Y"))
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®m MACHINE LEARNING TO THE RESCUE?

Setting: Likelihood evaluations / Inference can be cumbersome, but simulating is often easy
— Can we “learn”, with neural networks, ways to infer model parameters from spatial data?

Second approach: Learn a way to get approximate inferred parameters
(Mnih and Gregor, 2014; Lenzi et al., 2023; Sainsbury-Dale et al., 2024)

-

P e 1

o

gk +

. o . Neural oY)
o Network o )
+ + Pointwise | Approximate
£ Parameter Posterior

- estimate Distribution

Observations Y 6 - m(0)Y)

of spatialized variable
= Given the pairs (Y, 0), learn a functional relationship between the pair by minimizing a loss
function
= | earn variational approximation of the posterior distribution 7(0]Y") =~ ¢(0; k(Y)) by
minimizing expected KL-divergences
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®m MACHINE LEARNING TO THE RESCUE?

Setting: Likelihood evaluations / Inference can be cumbersome, but simulating is often easy
— Can we “learn”, with neural networks, ways to infer model parameters from spatial data?

Third aboroach: Generative model aboroach

W
P 'H . ‘t’. ]
e + Neural
. P
Lo E ™ o Network
+ +
L S
- ) Conditional simulations
Observations Y (Z|Y)

of spatialized variable

m |dea: Some generative models are “easy” to condition to observations and naturally include
variability of prior distribution
® Learn a neural approximation of whole data distribution 7(Z) = [ 7(Z,0)df and use
conditioning algorithm to get samples 7(Y'|9)
= Application with Diffusion Models (Cardoso and Pereira, 2025) — G. V. Cardoso’s talk [0.A4.3]
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TAKEAWAY MESSAGES

= Many tools to incorporate (PDE-based) physical constraints into GP models for spatial
statistics

— Through derivation of covariance kernels
— By solving SPDEs

= Still work to do for practical application

— Inference can be challenging
— Hope through ML based approaches

THANK YOU FOR YOUR ATTENTION!

https://mike-pereira.github.io/
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