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■ DATA FROM PHYSICAL PROCESSES

Many applications of Geostatistics to data linked to physical processes

Climate

− Interpolation of climate/weather variables (Temperature,
Precipitation, Geotrophic winds,...)

− Global scale data assimilation
− Stochastic Generators

Environment

− Diffusion of pollutant in soils
− Transport of pollutant in atmosphere, Air quality monitoring

And other fields

− Disease mapping
− Seismic wave mapping

→ Simple (PDE-based) physical can be used to describe the corresponding
variables

Daily Sea Surface
Temperature (Source:

NOOA)

Sulfate dispersion in the
atmosphere (Source: NASA)
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■ DATA FROM PHYSICAL PROCESSES

Examples of “physical” models

Diffusion phenomena (eg. Temperature): Heat equation

∂Z

∂t
− θ∆Z = u

Transport phenomena (eg. Concentration of pollutant in the air):
Advection-Diffusion equation

∂Z

∂t
+ γ · ∇Z − θ∆Z = u

Wave propagation : Wave equation

∂2Z

∂t2
− θ∆Z = 0

→ Can we incorporate this a priori knowledge into geostatistical modeling?

Daily Sea Surface
Temperature (Source:

NOOA)

Sulfate dispersion in the
atmosphere (Source: NASA)
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■ SETTING

Quantity of interest (QoI) Physical variable Z over a spatial/spatio-temporal domain D

Data (Noisy) Observations Y (xi) of Z at locations (x1, . . . , xND
) ∈ D

Goal (Probabilistic) Predictions of the QoI Z at unobserved locations

→ Need a probabilistic model on Y that accounts for spatial “structure” of Y

→ If possible, account for the fact that the QoI arises from a physical model{
LZ = u on D

BZ = uB on ∂D

where L is a linear (differential) operator, and u is a source term,
and B is a linear operator defining boundary/initial conditions

Assumption: Linear well-posed PDE problems
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■ SPATIO-TEMPORAL MODELING WITH GAUSSIAN PROCESSES

Gaussian Process (GP)

Z : {Z(x) : x ∈ D}
High correlation

Realization−→

QoI across space

Z : {Z(x) : x ∈ D}
High “similarity”

→ Allows to model non i.i.d data while only specifying the first two moments
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Zero-mean and characterized by a

covariance kernel CZ :

Cov(Z(x), Z(x′)) = CZ(x, x
′)
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■ SETTING

QoI Physical variable Z defined across time [0, T ] and/or D

Data (Noisy) Observations Y = (Y (x1), . . . , Y (xND
))T of Z at x1, . . . , xND

∈ D

Model QoI Z → GP Z and Data Y → Y where

Y(xi) = Z(xi) + τεi , i ∈ {1, . . . , k}

→ ε1, . . . , εND
∼ N(0, 1) iid noise

Goal (Probabilistic) Predictions of Y at unobserved locations

→ Vector of observations Y can be written

Y = Z + τε , ε ∼ N(0, I)

where Z = (Z(x1), . . . ,Z(xn))
T is a Gaussian vector ⇒ Explicit likelihood:

L(θ) =
1

2
log |Σ(θ) + τ2I| − 1

2
(Y −µ(θ))T (Σ(θ) + τ2I

)−1
(Y −µ(θ)) + Constant

where µ = E[Z] and Σ =
[
CZ(xk, xl)

]
1≤k,l≤ND
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))T of Z at x1, . . . , xND

∈ D

Model QoI Z → GP Z and Data Y → Y where

Y(xi) = Z(xi) + τεi , i ∈ {1, . . . , k}

→ ε1, . . . , εND
∼ N(0, 1) iid noise

Goal (Probabilistic) Predictions of Y at unobserved locations

→ Closed-form conditional distributions
(
Z(x′)|Y

)
∼ N(m(x′), σ2(x′)) where

m(x′) =

ND∑
k=1

[(
Σ+ τ2I

)−1
Y
]
k
CZ(xk, x

′), with Σ =
[
CZ(xk, xl)

]
1≤k,l≤ND

σ2(x′) = CZ(x
′, x′)−

ND∑
k=1

ND∑
l=1

CZ(x
′, xk)

[(
Σ+ τ2I

)−1]
kl
CZ(xl, x

′)
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■ OUTLINE

I. Covariance-based approaches

II. SPDE approach

III. Challenges in inference



■ PHYSICALLY-MOTIVATED MEAN

First possibility: Set mean of GP as output of physical model

−1

0

1

0.00 0.25 0.50 0.75 1.00

Variable of interest Y (s, t)

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

Mean depending on physical model
µ(s, t)

−0.6

−0.3

0.0

0.3

0.6

0.00 0.25 0.50 0.75 1.00

Residuals Z(s, t)

Examples: Regression over several physical model outputs

Residuals often chosen with simple structure: fully independent or independent in time,
stationary in space

Ex: Applications in predictive maintenance (Zhang et al., 2022; Jin et al., 2019)
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■ PHYSICALLY-CONSTRAINED COVARIANCE

Second possibility: Constrain the covariance kernel to yield physically realistic GPs
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Residuals with complex
spatio-temporal correlations Z(s, t)

Question: How do we pick the covariance kernel?
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■ KERNEL MAGIC

Consider a GP Z with covariance kernel

CZ(x, y) = Cov(Z(x),Z(y))

(Under some regularity assumptions) The derivative of a GP is a GP, and

Cov(
∂

∂x
Z(x),

∂

∂y
Z(y)) =

∂

∂x

∂C

∂y
(x, y)

More generally, when applying a linear operator to a GP, we get a GP :

Cov(LxZ(x),LyZ(y)) = (LxLyC)(x, y)

Moreover, the “vector” (LZ,Z) is also a GP

→ Use this to “constraint” kernel into incorporating physical constraints

M. Pereira – Physics-aware models with SPDEs: Models and Perspectives 10



■ COVARIANCE KERNEL WITH PHYSICAL CONSTRAINTS

Recall the physical constraint on the QoI
LZ = u

with L a linear differential operator, u a source term, and additional boundary/initial conditions

Idea: Replace Z by a GP Z with a fixed kernel CZ (eg. CZ(x, y) = exp(−∥x− y∥2)) :
LZ = U

⇒ The kernels of U and of the pair (U,Z) (cross-covariance) can be computed from L and CZ:

CU(x, y) = LxLyCZ(x, y), CU,Z(x, y) = LxCZ(x, y)

Then, we can “enforce” the PDE by adequately conditioning the pair (Z,U)
→ Create “data” to enforce (or not) the right-hand side : U(yi) = u(yi), y1, . . . , yp ∈ D

→ Create “data” to enforce potential initial/boundary conditions

Finally, compute a posteriori distribution of Z (and of U !) given “real” data Y and artificial
(PDE-enforcing) data
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■ COVARIANCE KERNEL WITH PHYSICAL CONSTRAINTS

Recall the physical constraint on the QoI
LZ = u

with L a linear differential operator, u a source term, and additional boundary/initial conditions
Assumption : We can compute the solution operator L−1: Source term 7→ Solution of the PDE (eg.
Green’s function, spectral approach)

Alternative approach: Fix the kernel of U instead (eg. CU(x, y) = exp(−∥x− y∥2)) and use

LZ = U ↔ Z = L−1U

where L−1 denotes the solution operator associated ⇒ The kernels of Z and of the pair (U,Z)
(cross-covariance) can be computed from L−1 and CZ

Note that
− PDE parameters can now be part of the inference: Part of kernel parameters

− Putting a prior on U can be seen as a way of dealing with unknown source terms

− Enforce PDE constraint on Z or on the pair (Z,U) (→ Physics-based multivariate model)
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■ COVARIANCE KERNEL WITH PHYSICAL CONSTRAINTS

Recall the physical constraint on the QoI
LZ = u

with L a linear differential operator, u a source term, and additional boundary/initial conditions
Assumption : We can compute the solution operator L−1: Source term 7→ Solution of the PDE (eg.
Green’s function, spectral approach)

Examples of applications

− Approximate solutions of PDEs (Raissi et al., 2017)

− Estimation of geostrophic and tropical winds (Berliner, 2003; Wikle et al., 2001) → Gradient
constraints on components

− Concentrations of proteins in drosophila (López-Lopera et al., 2019) → Reaction diffusion
equation
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■ COMMENTS ABOUT THE COVARIANCE-BASED APPROACH

Starting from the relation LZ = U

Challenges when putting the GP prior on Z

The regularity of Z depends on the choice of CZ (eg. Gaussian
kernel → Infinitely differentiable paths)

Need to come up with sensible kernels for the QoI: Challenging
when

− Non-stationarity / Transport phenomena
− Non-Euclidean geometries for the spatial domain

Challenges when putting the GP prior on U

The solution operator is not rarely available in closed-form

→ Alternative approach: Solve the Stochastic PDE numerically

(Source: NASA)
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■ OUTLINE

I. Covariance-based approaches

II. SPDE approach

III. Challenges in inference



■ THE SPDE APPROACH

Basic idea: if Z is an isotropic Markovian field over Rd, then it is equivalently characterized by
(Whittle, 1954; Rozanov, 1977):

Spectral density ΓZ = F [CZ]

ΓZ : ξ ∈ Rd 7→ 1

P (∥ξ∥2)

Stochastic partial differential equation (SPDE)

P (−∆)1/2Z = W

W: Gaussian white noise
P (−∆)1/2Z := F−1

[
ξ 7→

√
P (∥ξ∥2)× F [Z](ξ)

]
where P is a polynomial, strictly positive over R+
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P (−∆)1/2Z = W

W: Gaussian white noise
P (−∆)1/2Z := F−1

[
ξ 7→

√
P (∥ξ∥2)× F [Z](ξ)

]
where P is a polynomial, strictly positive over R+

→ In particular, if P (x) = (κ2 + x)α, i.e. with the SPDE

(κ2 −∆)α/2Z = W

then Z has a Matérn covariance function

CZ(x, x+h) =
σ2

2ν−1Γ(ν)

(
κ∥h∥

)ν
Kν

(
κ∥h∥

)
, (ν = α− d/2)
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■ THE SPDE APPROACH

Basic idea: if Z is an isotropic Markovian field over Rd, then it is equivalently characterized by
(Rozanov, 1977):

Spectral density

ΓZ : ξ ∈ Rd 7→ 1

P (∥ξ∥2)

Stochastic partial differential equation (SPDE)

P (−∆)1/2Z = W

W: Gaussian white noise
P (−∆)1/2Z := F−1

[
ξ 7→

√
P (∥ξ∥2)× F [Z](ξ)

]
where P is a polynomial, strictly positive over R+

SPDE approach (Lindgren et al., 2011, 2022)

See GPs as solutions of SPDEs (rather than through their covariance kernel)

Solve SPDE numerically with finite elements (or finite volume) method to sample GP /
characterize its distribution
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■ FINITE ELEMENT APPROXIMATION OF SPDES

Goal: Find an approximation of the solution to: P (−∆)1/2Z = W

Triangulation of the domain Piecewise linear approximation of the solution

Z(p) ≈ Ẑ(p) =

n∑
i=1

Ziψi(p)

≈

The weights Z = (Z1, . . . , Zn) form a (centered) Gaussian vector whose precision matrix QZ has an
explicit formula

→ Depends on known sparse matrices
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■ GAUSSIAN MARKOV RANDOM FIELD APPROXIMATION

Goal: Find an approximation of the solution to: P (−∆)1/2Z = W

Mass matrix (→ Diagonal)

C =


⟨ψ1, 1⟩

. . .

⟨ψn, 1⟩


Stiffness matrix (→ Sparse)

R =


. . .

... . .
.

⟨∇ψi,∇ψj⟩

. .
. ...

. . .


and set

S = C−1/2RC−1/2

The weights Z = (Z1, . . . , Zn) satisfy form a (centered) Gaussian vector whose precision matrix QZ

QZ = C1/2P (S)C1/2

→ QZ is sparse (when degP is relatively small)
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■ STRAIGHTFORWARD EXTENSIONS

Non-stationarity

Define SPDE with spatially-varying coefficients

(κ2(·)− div(H(·)∇))αZ = W

Simulation of non-stationary GP using the SPDE approach

Non-Euclidean domain

Define SPDE on Riemannian manifolds (D, g)

P (−∆g)Z = W

where −∆g is the Laplace–Beltrami operator

Simulations of GPs on smooth surfaces using the SPDE
approach
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■ STRAIGHTFORWARD EXTENSIONS

Galerkin-Chebyshev approximation of random fields (Pereira et al., 2022; Lang and Pereira, 2021)

Field

Z = γ(L)W,

where |γ(λ)| = Oλ→∞(|λ|−β) with β > d/4

Finite element approximation

Z =

n∑
i=1

Ziψi

Weights of the approximation

Z = C−1/2γ(S)W , where S = C−1/2RC−1/2

C =
[
⟨ψi, ψj⟩L2(M)

]
,R =

[
⟨Lψi, ψj⟩L2(M)

]
→ Computed with polynomial approximation
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■ BACK TO OUR INITIAL QUESTION

Recall the physical constraint on the QoI
LZ = u

with L a linear differential operator, u a source term, and additional boundary/initial conditions

Idea: Replace the right-hand side with a GP U (usually Gaussian white noise) and solve the
SPDE using finite element / volume method

Result: Finite element approximation of the SPDE solution

Z(p) ≈ Ẑ(p) =

n∑
i=1

Ziψi(p)

weights Z = (Z1, . . . , Zn) form a (centered) Gaussian vector with precision matrix QZ

depending on the L
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■ EXAMPLE: SOME SIMPLE TRANSPORT PHENOMENA

Advection
∂z

∂t
+ v⃗ · ∇z = 0

Diffusion
∂z

∂t
−∆z = 0

Advection + Diffusion
∂z

∂t
+ v⃗ · ∇z −∆z = 0
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■ EXAMPLE: DIFFUSION PROCESS

Physical constraint on the QoI:

LZ =
∂Z

∂t
+ (κ2 −∆)α/2Z = u

with u a source term, and additional boundary/initial conditions

→ Consider the diffusion SPDE (Bakka et al., 2020; Rayner et al., 2020):

∂Z

∂t
+ (κ2 −∆)α/2Z = τWT ⊗WS ,

where WT ⊗ YS is a white noise in time and colored noise in space
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■ EXAMPLE: ADVECTION-DIFFUSION PROCESS

Physical constraint on the QoI:

LZ =
∂Z

∂t
+

1

c

(
(κ2 −∆)αZ + γ · ∇Z

)
= u

with u a source term, and additional boundary/initial conditions

→ Consider the advection-diffusion SPDE:
∂Z

∂t
+

1

c

(
(κ2 −∆)αZ+ γ · ∇Z

)
=

τ√
c
WT ⊗ YS

where WT ⊗ YS is a white noise in time and colored noise in space, and γ an advection vector

Clouding covering estimation (Clarotto et al., 2022)

Precipitation and tropical thunderstorm modeling (Sigrist et al., 2015; Liu

et al., 2022)

Air pollution (Chen et al., 2023)

Ocean salinity data (Berild and Fuglstad, 2024)
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■ EXAMPLE: ADVECTION-DIFFUSION PROCESS

Physical constraint on the QoI:

LZ =
∂Z

∂t
+

1

c

(
(κ2 −∆)αZ + γ · ∇Z

)
= u

with u a source term, and additional boundary/initial conditions

→ Application: Model pollutant dispersion at a global scale : L. Clarotto’s talk [O.A4.1]

Solution of an advection-diffusion SPDE with advection defined by wind data (ECMWF Atmospheric Composition
Reanalysis 4, every 3 hours, 01/12/2024 - 03/12/2024)
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■ EXAMPLE: COUPLED SYSTEM OF SPDE

Project with the French National Agency for Nuclear Waste : Study of deformations
underground nuclear waste storage galleries

QoI : Temperature and Deformations over gallery surface

Low number of captors (32 per section, max)

Physical constraints on the QoIs : Temperature T , Radial Deformation Z{
LTT = ∂Z

∂t − α∆T = uT

LZZ = ∆2Zβ1∆Z − β2∆T = uZ

with uT , uZ (unknown) source terms, and additional boundary/initial conditions

Example of joint simulation of Temperature and Deformation with the SPDE approach
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■ OUTLINE

I. Covariance-based approaches

II. SPDE approach

III. Challenges in inference



■ COVARIANCE BASED APPROACHES

Vector of observations Y can be expressed as

Y = Z + τε, ε ∼ N(0, I)

where Z is a Gaussian vector ⇒ Gaussian likelihood expensive too compute!

L(θ) =
1

2
log |Σ(θ) + τ2I| − 1

2
(Y − µ(θ))T (Σ(θ) + τ2I

)−1
(Y − µ(θ)) + Constant

Several approaches to speed up computations

Covariance tapering → Sparse matrices (Kaufman et al., 2008)

Low-rank approximations / Inducing points methods (Hensman et al., 2013; Datta et al., 2016)

Vecchia approximation (Katzfuss and Guinness, 2021)

→ The GP distribution is approximated to allow inference
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■ SPDE-BASED APPROACHES

Vector of observations Y can be expressed as

Y = AZ + τε, ε ∼ N(0, I)

where Z is a Gaussian vector, A a design matrix ⇒ Gaussian likelihood expensive too compute!

L(θ) =
1

2
log |AQ(θ)AT + τ2I| − 1

2
(Y − µ(θ))T (AQ(θ)AT + τ2I

)−1
(Y − µ(θ)) + Constant

Several approaches to speed up computations

Restriction on parameters / SPDEs considered → Sparse matrices (Lindgren et al., 2011)

Stochastic trace estimation (Pereira et al., 2022)

Design of preconditionners (Antil and Saibaba, 2024)

→ The GP distribution is approximated to allow inference
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■ MACHINE LEARNING TO THE RESCUE?

Setting: Likelihood evaluations / Inference can be cumbersome, but simulating is often easy
→ Can we “learn”, with neural networks, ways to infer model parameters from spatial data?

Two useful remarks

By sampling from some prior θ ∼ π(θ) and then simulating data Y ∼ π(Y |θ)
→ We can create (many!) samples (Y ; θ) from the joint distribution π(Y , θ)

We can approximate (expectations of) KL-divergences involving the posterior distribution using
these samples
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■ MACHINE LEARNING TO THE RESCUE?

Setting: Likelihood evaluations / Inference can be cumbersome, but simulating is often easy
→ Can we “learn”, with neural networks, ways to infer model parameters from spatial data?

First approach: Learn a way to approximate the likelihood of the model
(Dutta et al., 2016; Walchessen et al., 2024)

Use Likelihood-to-Evidence ratio π(Y |θ)/π(Y ) to link likelihoood to a classification probability
→ Only need to learn a classifier

Learn variational approximation of likelihood L(θ;Y ) ≈ q(θ;κ(Y ))
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■ MACHINE LEARNING TO THE RESCUE?

Setting: Likelihood evaluations / Inference can be cumbersome, but simulating is often easy
→ Can we “learn”, with neural networks, ways to infer model parameters from spatial data?

Second approach: Learn a way to get approximate inferred parameters
(Mnih and Gregor, 2014; Lenzi et al., 2023; Sainsbury-Dale et al., 2024)

Given the pairs (Y , θ), learn a functional relationship between the pair by minimizing a loss
function
Learn variational approximation of the posterior distribution π(θ|Y ) ≈ q(θ;κ(Y )) by
minimizing expected KL-divergences
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■ MACHINE LEARNING TO THE RESCUE?

Setting: Likelihood evaluations / Inference can be cumbersome, but simulating is often easy
→ Can we “learn”, with neural networks, ways to infer model parameters from spatial data?

Third approach: Generative model approach

Idea: Some generative models are “easy” to condition to observations and naturally include
variability of prior distribution

Learn a neural approximation of whole data distribution π(Z) =
∫
π(Z, θ)dθ and use

conditioning algorithm to get samples π(Y |θ)
Application with Diffusion Models (Cardoso and Pereira, 2025) → G. V. Cardoso’s talk [O.A4.3]
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■ TAKEAWAY MESSAGES

Many tools to incorporate (PDE-based) physical constraints into GP models for spatial
statistics

− Through derivation of covariance kernels
− By solving SPDEs

Still work to do for practical application

− Inference can be challenging
− Hope through ML based approaches

THANK YOU FOR YOUR ATTENTION!

https://mike-pereira.github.io/

M. Pereira – Physics-aware models with SPDEs: Models and Perspectives 35

https://mike-pereira.github.io/


■ REFERENCES

Antil, H. and Saibaba, A. K. (2024). Efficient algorithms for bayesian inverse problems with
whittle–matérn priors. SIAM Journal on Scientific Computing, 46(2):S176–S198.

Bakka, H., Krainski, E., Bolin, D., Rue, H., and Lindgren, F. (2020). The diffusion-based extension
of the Matérn field to space-time.

Berild, M. O. and Fuglstad, G.-A. (2024). Non-stationary spatio-temporal modeling using the
stochastic advection–diffusion equation. Spatial Statistics, 64:100867.

Berliner, L. M. (2003). Physical-statistical modeling in geophysics. Journal of Geophysical Research:
Atmospheres, 108(D24).

Cardoso, G. V. and Pereira, M. (2025). Predictive posterior sampling from non-stationnary gaussian
process priors via diffusion models with application to climate data. arXiv preprint
arXiv:2505.24556.

Chen, J., Miao, C., Yang, D., Liu, Y., Zhang, H., and Dong, G. (2023). Estimation of fine-resolution
pm2.5 concentrations using the inla-spde method. Atmospheric Pollution Research, 14(7):101781.

M. Pereira – Physics-aware models with SPDEs: Models and Perspectives 36



■ REFERENCES

Clarotto, L., Allard, D., Romary, T., and Desassis, N. (2022). The spde approach for
spatio-temporal datasets with advection and diffusion. arXiv preprint arXiv:2208.14015.

Datta, A., Banerjee, S., Finley, A. O., and Gelfand, A. E. (2016). On nearest-neighbor gaussian
process models for massive spatial data. Wiley Interdisciplinary Reviews: Computational
Statistics, 8(5):162–171.

Dutta, R., Corander, J., Kaski, S., and Gutmann, M. U. (2016). Likelihood-free inference by ratio
estimation. arXiv preprint arXiv:1611.10242.

Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian processes for big data. arXiv preprint
arXiv:1309.6835.

Jin, X., Ni, J., et al. (2019). Physics-based gaussian process for the health monitoring for a rolling
bearing. Acta astronautica, 154:133–139.

Katzfuss, M. and Guinness, J. (2021). A general framework for vecchia approximations of gaussian
processes. Statistical Science, 36(1):124–141.

M. Pereira – Physics-aware models with SPDEs: Models and Perspectives 37



■ REFERENCES

Kaufman, C. G., Schervish, M. J., and Nychka, D. W. (2008). Covariance tapering for
likelihood-based estimation in large spatial data sets. Journal of the American Statistical
Association, 103(484):1545–1555.

Lang, A. and Pereira, M. (2021). Galerkin–Chebyshev approximation of Gaussian random fields on
compact Riemannian manifolds. arXiv preprint arXiv:2107.02667.

Lenzi, A., Bessac, J., Rudi, J., and Stein, M. L. (2023). Neural networks for parameter estimation in
intractable models. Computational Statistics & Data Analysis, 185:107762.

Lindgren, F., Bolin, D., and Rue, H. (2022). The SPDE approach for Gaussian and non-Gaussian
fields: 10 years and still running. Spatial Statistics, 50:100599.

Lindgren, F., Rue, H., and Lindström, J. (2011). An explicit link between Gaussian fields and
Gaussian markov random fields: the stochastic partial differential equation approach. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 73(4):423–498.

Liu, X., Yeo, K., and Lu, S. (2022). Statistical modeling for spatio-temporal data from stochastic
convection-diffusion processes. Journal of the American Statistical Association,
117(539):1482–1499.

M. Pereira – Physics-aware models with SPDEs: Models and Perspectives 38



■ REFERENCES
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