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ABSTRACT

The aim of this work is to propose a statistical model for spatio-temporal data on meshed surfaces
based on the SPDE modeling approach. To do so, we consider a class of advection-diffusion SPDEs
defined on smooth compact orientable closed Riemannian manifolds of dimension 2, and their
discretization using a Galerkin approach. We show how this approach allows to easily propose
scalable algorithms for the simulation and prediction of Gaussian random fields that are solutions to
the discretized SPDE.

Note: This document contains links to animated figures colored in dark red. All these animations are collected at:
https://mike-pereira.github.io/STRF/.

1 Introduction

In Geostatistics, when modeling spatio-temporal data, the observed variable is seen as (a realization of) a space-time
Gaussian random field (GRF), so that the mere characterization of its mean and covariance functions suffices to
fully describe its statistical properties. In particular, these two functions are chosen to mimic the spatio-temporal
variability and structure observed in the data [33]. This probabilistic framework has many advantages. On the one
hand, it allows to perform simulations of random fields with the same spatio-temporal structure as the one observed in
the data, and predictions of at unobserved locations. On the other hand, uncertainties can be quantified both on the
variable behavior at unobserved locations (using so-called conditional simulations) or on the model parameters (through
Bayesian approaches) [8].

Of particular interest in this work is the setting where the spatial domain on which the data lie is not Euclidean, but
rather represents a meshed surface. For instance, this is the case when dealing fMRI data in neuroimaging applications,
in which case the data lie on the cortical surface (i.e.. the surface of the brain): see eg. [20] and the illustration in
Figure 1.1A. This is also the case when considering global data in environmental applications, for which the data lie on
a sphere representing our planet (see eg. [28]), and on this surface transport phenomena (due to winds and currents for
instance) can affect the structure of the data (see eg. Figure 1.1B). Hence the main motivations of this work: proposing
models for spatio-temporal GRFs flexible enough to represent complex patterns of correlations in data lying on compact
meshed surfaces, and but simple enough so that numerically efficient algorithms for their inference, simulation and
prediction can be derived.

ACKNOWLEDGMENT The author would like to thank Nicolas Desassis and Lucia Clarotto for their insightful comments and
advices.
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(A) Volumetric (left) and surface (right) representations of fMRI data. In
the right picture, both the curvature of the surface and the BOLD response

from the fMRI volume are represented. (Source: [20])

(B) Simulation of the presence of sulfate in the Earth
atmosphere (Source: NASA Global Modeling and

Assimilation Office)

Figure 1.1: Examples of spatio-temporal data distributed on surfaces.

2 Context and state-of-the art

When it comes to defining and building spatio-temporal GRFs to model data, there exists two main approaches: either
through the definition of valid covariance functions (which are then “fitted” on the data), or through dynamical models
describing the evolution in space and time of the GRFs. Let us review the principle and limits of both approaches.

2.1 The covariance-based approach

Since we consider GRFs, tasks such as sampling from (un)-conditional distributions, predictions (through conditional
expectations),and likelihood-based inference can all be performed by solving linear systems or adequately factorizing
covariance matrices of the field [33]. Hence, the most straightforward (and classical) approach to spatio-temporal
geostatistical modeling consists in fitting valid space-time covariance functions on the data, so that these covariance
matrices may be built. Consequently, extensive literature on which covariance functions may be used to model
spatio-temporal data, even with complex correlation patterns, is available (see [7, 26, 27] for recent reviews).

Nonetheless, the covariance-based approach has two main drawbacks. First, the matrix factorizations required in
sampling, prediction and inference tasks have a complexity that scales as the cube of the number of observations and/or
target points, thus making them unfeasible when this last number is large. To circumvent this, simplifying assumptions
on the covariance model must be made, such as the separability of space and time dependencies or stationarity. This
in turn may result in a lack of realism of the model. Secondly, since they rely on Euclidean or arc-length distances,
most of the covariance models available in the literature are restricted to the setting where the spatial domain is either
Euclidean or the sphere . Hence, they hardly generalize to other surfaces.

2.2 The dynamic approach

As foretold by its name, this approach relies on models of the dynamic evolution of the GRF in time and space. These
models take the form of stochastic partial differential equations (SPDE), the solutions of which are GRFs. This “SPDE
approach” to GRF modeling has been popularized by Lindgren et al. [17], and builds on a result from Whittle [34]
which states that isotropic GRFs Z on Rd (d ∈ N) with a Matérn covariance function are stationary solutions of the
SPDE given by

(κ2 −∆)α/2Z = τW, (1)

where κ > 0, α > d/2, τ > 0, and (κ2 − ∆)α/2 is a pseudo-differential operator (defined as (κ2 − ∆)α/2[·] =
F−1[w 7→ (κ2 + ∥w∥2)α/2F [·](w)]), and W is a Gaussian white noise on Rd. Solving numerically this SPDE
using stochastic finite elements allows to directly obtain an expression for the precision matrix (i.e. the inverse of
the covariance matrix) of a GRF with Matérn covariance. Then, at the price of a minor approximation (called mass
lumping), these expressions yield a Gaussian Markov random field representation of the GRF, characterized by a sparse
precision matrix [18, 29]. This in turn results in significant computational gains since sparse matrix algorithms can be
used to deal with the matrix factorizations and linear system solving involved when performing sampling, prediction
and inference [13, 17].

The SPDE approach has been extensively used to model spatial data on Euclidean domains (see [18] for a recent review),
and extended to model spatial data on surfaces (see eg. [3, 11, 20]) and more generally on Riemannian manifolds (see
eg. [15, 16]) by replacing the Laplace operator −∆ in SPDE (1) by a Laplace–Beltrami operator.
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Figure 2.1: Simulation a spatio-temporal diffusion SPDE on the sphere represented from three different viewpoints on
the surface (t represents the time step, std-dev the standard deviation of the field value across the surface).

Extensions of the SPDE approach to the spatio-temporal setting have also been proposed. Cameletti et al. [6] propose
an approach where the spatial SPDE is coupled with an AR(1) process in time, thus yielding a separable model.
Non-separable models based on a direct generalization of SPDE (1) have been proposed by Bakka et al. [1] and Rayner
et al. [28], who consider the solutions of diffusion SPDE defined on Euclidean domains and on surfaces by

∂Z

∂t
+ (κ2 −∆)α/2Z = τWT ⊗WS ,

whereWT denotes a temporal white noise andWS denotes either a white or colored noise in space. For reference, we
provide in Figure 2.1 a simulation of a solution to this SPDE on the sphere. But these models result in random fields
with even covariance functions, meaning that changing the sign of the spatial or temporal lag at which the covariance is
evaluated does not change the value of the covariance. Consequently, these models are incapable of accounting for
transport effects such as advection phenomena (which are intrinsically asymmetrical in time). Note however that in
the Euclidean setting, extensions of the SPDE approach allowing to deal with asymmetries in the covariance structure
have been proposed by Clarotto et al. [9], Liu et al. [19], Sigrist et al. [32]. However, to the best of our knowledge, the
generalization of such models to more complex geometries is left open.

2.3 Proposed approach

The aim of this work is to propose new models for spatio-temporal data on meshed surfaces based on the SPDE
modeling approach. To do so, we generalize the approach proposed by Clarotto et al. [9] to model spatio-temporal data
on Euclidean domains using an advection-diffusion SPDE, to compact smooth orientable Riemannian manifolds of
dimension 2. Then, following the framework proposed in [16], we define a counterpart to the advection-diffusion SPDE
on a meshed triangulation of the manifold using Galerkin approximations of the differential operators. We show how
this approach allows to easily propose scalable algorithms for the simulation and prediction of Gaussian random fields
that are solutions to the resulting SPDE.

3 Advection-diffusion SPDE on a Riemannian manifold

We start by defining the advection-diffusion SPDE on a Riemannian manifold that will be considered on this work. Let
(M, g) denote a compact orientable smooth Riemannian manifold of dimension d = 2, without boundary. Let T > 0,
we denote by −∆M the Laplace–Beltrami operator of the surface We consider the following advection-diffusion SPDE
on the domain [0, T ]×M:

∂Z
∂t

+
1

c

(
P (−∆M)Z + div(Zγ)

)
=

τ√
c
WT ⊗ YS , (2)

where

• P is a polynomial taking positive values on R+,
• s ∈M 7→ γ(s) is a smooth vector field on TM (the tangent bundle ofM),
• c > 0 is a time-scaling parameter, and τ > 0 is a variance-scaling parameter,
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• WT ⊗ YS is a space-time separable stochastic forcing given as the product of a time-dependent Gaussian
white noiseWT and a space-dependent colored noise YS = fS(−∆M)WS where fS : R+ → R is a bounded
function (cf. Appendix A.1 for a definition of colored noise).

In particular, we assume that the vector field γ and the solution Z are smooth enough so that the divergence term in (2)
may be rewritten according to the Leibniz rule as

div(Zγ)(t, s) = div(γ(s))Z(t, s) + gs(γ(s),∇Z(t, s)), s ∈M, t ∈ [0, T ]. (3)

The space-time forcing is defined as a generalized random field acting on functions of L2([0, T ]) × L2(M). Let
⟨·, ·⟩ (resp. ⟨·, ·⟩T ) denote the usual inner product on L2(M) (resp. L2([0, T ])). Then for any (ϕT , ϕS), (φT , φS) ∈
L2([0, T ])× L2(M),WT ⊗ YS(ϕT , ϕS) andWT ⊗ YS(φT , φS) are centered Gaussian random variables, and

Cov

[
WT ⊗ YS(ϕT , ϕS),WT ⊗ YS(φT , φS)

]
= ⟨ϕT , φT ⟩T ⟨fS(−∆M)ϕS , fS(−∆M)φS⟩.

Note that this space-time forcing term can be identified with a cylindrical Wiener process {W̃t}t∈[0,T ] in L2(M)
through

W̃t(ϕS) = (WT ⊗ YS)(1[0,t], ϕS), ϕS ∈ L2(M), t ∈ [0, T ],

where 1[0,t] denotes the indicator function of the segment [0, t] [4]. As such, we have (almost-surely) the following
decomposition of W̃t

W̃t =
∑
j∈N

fS(λj)βj(t)ej , t ∈ [0, T ], (4)

where {ej}j∈N denotes an orthonormal basis of L2(M) composed eigenfunctions of the Laplace–Beltrami operator
−∆M, and {λj}j∈N their associated eigenvalues. This identification allows in turn to write

WT ⊗ YS(ϕT , ϕS) = ⟨
∫ T

0

ϕTdW̃t, ϕS⟩, (ϕT , ϕS) ∈ L2([0, T ])× L2(M).

where the integral term is given by∫ T

0

ϕTdW̃t =
∑
j∈N

fS(λj)

(∫ T

0

ϕTdβj(t)

)
ej .

Hence, we can interpret the forcing termWT ⊗YS as the (time) derivative of the cylindrical Wiener process {W̃t}t∈[0,T ].
This analogy allows in particular to rewrite SPDE (2) in the perhaps more familiar form for the readers used to stochastic
differential equations (SDE) in infinite dimensions [12]

dZ = −1

c

(
P (−∆M)Z + div(Zγ)

)
dt+

τ√
c
dW̃t.

We conclude this section with a few words about the vector field γ. A natural way to define (and parametrize) a smooth
vector field γ on a arbitrary manifoldM is to assume that it is the gradient of a smooth scalar function ξ :M→ R, i.e.
for any s ∈M,

γ(s) = ∇ξ(s) ∈ TsM. (5)
In this setting, the function ξ can be seen as a potential whose spatial variations locally define the direction of the
advection.

Note that this decomposition is not general enough to parametrize all smooth vector fields. For instance, similarly
to the Euclidean case, the curl of vector fields defined as in (5) will be zero. A complete characterization of smooth
vector fields is given by Helmholtz-Hodge decomposition theorem, which states that vector fields may be uniquely
decomposed as the sum of a irrotational component (whose curl is zero), a divergence-free component (whose div
is zero) and a harmonic component [2]. In some specific cases, this decomposition can be easily parametrized. For
instance, ifM = S2 is the 2-sphere, we can decompose any tangent vector field γ as

γ(s) = ∇ξ(s) + n⃗(s)×∇χ(s) ∈ TsS2, (6)

for some scalar functions ξ, χ : S2 → R, and with n⃗(s) denoting the vector normal to S2 and pointing outwards [22].
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4 Advection-diffusion SPDE on a meshed surface

4.1 Definition and discretization of the SPDE

LetMh be a discretization of the manifoldM into a polyhedral surface with mesh size h > 0 (by triangulation). Let
{ψ1, . . . , ψN} ⊂ H1(Mh) be the the linear finite element basis associated withMh, where N is the number of nodes
of the triangulation. Let then VN = span {ψk : 1 ≤ k ≤ N}.
In order to formulate an advection-diffusion SPDE onMh, we look for an approximation of the solution Z of (2) that
can be expressed as a VN -valued random variable (at any time). We obtain it by approximating each term in the SPDE
by operators or variables that “live” on VN . This is done in two steps. First, the colored noise YS is approximated by a
VN -valued random variable YS defined by

YS = fS(−∆N )WS =

n∑
k=1

wkfS(λ
(N)
k )e

(N)
k , (7)

where {wk}1≤k≤N a sequence of independent standard Gaussian variable. Note that this definition holds for any
bounded fS , and is equivalent to the definition of colored noise previously introduced, after replacing H by VN and the
Laplace–Beltrami operator −∆M by its Galerkin approximation −∆N . Besides, when either of the decompositions
(5)-(6) is used, we assume that the potential functions ξ and χ are also taken in VN , which yields a piecewise constant
approximation of the vector field. Details about the computations related to such vector fields can be found in [25].

Let −∆N be the Galerkin approximation of −∆M over VN (cf. Appendix A.2) and let {λ(N)
k }1≤k≤N denote its

eigenvalues, and {e(N)
k }1≤k≤N be a set of associated eigenfunctions forming an orthonormal basis of VN . Then, we

rewrite (2) by replacing Z(t, ·) by an approximation Z(t, ·) ∈ VN , and replacing −∆M by its approximation −∆N ,
thus giving

∂Z

∂t
+

1

c

(
P (−∆N )Z + div(γZ)

)
=

τ√
c
WT ⊗ YS , t ∈ [0, T ], (8)

whereWT ⊗ YS is defined in the same way as its counterpartWT ⊗ YS , i.e. as a generalized random field acting on
functions of L2([0, T ])× VN . Note in particular that the gradients and integrals now involved in the definition of (8)
are now taken on the polyhedral surface.

Remark 4.1. Once again, we can be identifyWT ⊗ YS with a cylindrical Wiener process {W̃t}t∈[0,T ] in VN , which
can be decomposed as (4) where the eigenfunctions {ej}j∈N and eigenvalues {λj}j∈N of −∆M, by the eigenfunctions
{e(N)

j }1≤j≤N and eigenvalues {λ(N)
j }1≤j≤N of −∆N .

We now discretize (8) in time, by applying an implicit Euler scheme with time step δt > 0. We start by discretizing the
time interval [0, T ] into K + 1 regular time steps of size δt = T/K, and write tk = kδt for k ∈ {0, . . . ,K}. Let then
Z(k) = Z(tk, ·) denote the approximation of the spatial trace of the solution to SPDE (8) at time tk. Starting from an
initial condition Z(0) = Z(0, ·) ∈ VN (taken for instance as the projection onto VN of the initial condition Z(0, ·) of
the original SPDE (2)), we have the recursion

Z(k+1) − Z(k) +
δt

c

(
P (−∆N )Z(k+1) + div(γZ(k+1))

)
= τ

√
δt

c
Y (k+1), k ∈ N0, (9)

where {Y (k)}k∈N is a sequence of independent samples of YS .

The next proposition presents explicit formulas to compute this recursion. First, let us introduce some standard finite
element discretization matrices. We denote by C,R andB the matrices whose entries are respectively given by

Cij = ⟨ψi, ψj⟩, Rij = ⟨∇ψi,∇ψj⟩, Bij = ⟨ψi,div(γψj)⟩, 1 ≤ i, j ≤ N, (10)

and let
√
C ∈ RN×N such that C =

√
C(
√
C)T . We also introduce the scaled matrices R̃ and B̃ defined by

R̃ = (
√
C)−1R(

√
C)−T , B̃ = (

√
C)−1B(

√
C)−T .

Proposition 4.2. For 0 ≤ k ≤ K, let z(k) = (z
(k)
1 , . . . , z

(k)
N )T be the the (random) vector such that

Z(k) =

N∑
j=1

z
(k)
j ψj (11)
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We also denote by Γ the matrix defined by

Γ = I +
δt

c

(
P (R̃) + B̃

)
. (12)

Let x(0) = (
√
C)Tz(0). Then we have the following recursion for 0 ≤ k < K{

Γx(k+1) = x(k) + fδt(R̃)w(k+1),

z(k+1) = (
√
C)−Tx(k+1),

(13)

where {w(k)}k∈N is a sequence of independent centered Gaussian vectors with covariance matrix I , and fδt is the
function defined by

fδt(λ) = τ

√
δt

c
fS(λ), λ ≥ 0,

and the matrix function fδt(R̃) is defined in Appendix A.3.

Proof. We write for k ∈ N0, α(k) = (α
(k)
1 , . . . , α

(k)
N )T ∈ RN , y(k) = (y

(k)
1 , . . . , y

(k)
N )T , where

P (−∆N )Z(k) =

N∑
j=1

α
(k)
j ψj , Y (k) =

N∑
j=1

y
(k)
j ψj .

Besides, let ξ(k) be the vector defined by ξ(k) =
(
⟨Z(k), e

(N)
1 ⟩, . . . , ⟨Z(k), e

(N)
N ⟩

)T
.

Firstly, note that, following [16, Theorem 3.4], we can take

y(k) = (
√
C)−T fS(R̃)w(k), k ∈ N,

where {w(k)}k∈N is a sequence of independent centered Gaussian vectors with covariance matrix I .

Then, by testing (9) against ψi (for i ∈ {1, . . . , N}), and injecting (11), we get the following linear system of equations

Cz(k+1) −Cz(k) + δt

c

(
Cα(k+1) +Bz(k+1)

)
= τ

√
δt

c
Cy(k+1) (14)

On the one hand, following the definition of the map E in (27), we have

Z(k+1) = E

(
(
√
C)Tz(k+1)

)
and P (−∆N )Z(k+1) = E

(
(
√
C)Tα(k+1)

)
(15)

On the other hand, following the definition of the basis {e(N)
j }1≤j≤N ,

Z(k+1) =

N∑
j=1

⟨Z(k+1), e
(N)
j ⟩E(vj) = E

( N∑
j=1

⟨Z(k+1), e
(N)
j ⟩vj

)
= E

(
V ξ(k+1)

)
Hence, since E is invertible, we have (

√
C)Tz(k+1) = V ξ(k+1).

Similarly, by definition of P (−∆N ), we have

P (−∆N )Z(k+1) =

N∑
j=1

P (λ
(N)
j )⟨Z(k+1), e

(N)
j ⟩e(N)

j = E
(
V P (Λ(N))ξ(k+1)

)
= E

(
P (R̃)V ξ(k+1)

)
Therefore, we have P (−∆N )Z(k+1) = E

(
P (R̃)(

√
C)Tz(k+1)

)
, and using (15) and the fact that E is invertible, we

can deduce that α(k+1) = (
√
C)−TP (R̃)(

√
C)Tz(k+1).

In conclusion, we can now rewrite (14) as(
C +

δt

c
(
√
C)P (R̃)(

√
C)T +

δt

c
B

)
z(k+1) = Cz(k) + τ

√
δt

c
Cy(k+1).

By then introducing the vectors x(k) = (
√
C)Tz(k), we retrieve the recursion (13).

6
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(A) Advection potential function ξ (irrotational component).

(B) Advection potential function χ (divergence-free component).

(C) Numerical solution of the SPDE.

Figure 4.1: Simulation of a solution to the advection-diffusion SPDE on a meshed sphere, represented from three
different viewpoints on the surface.

Remark 4.3. In the case where there is no advection (γ = 0), an exact time integrator can be proposed for (8). This
resulting numerical scheme can be applied to uneven time discretization steps, and relies solely on matrix functions of
the scaled matrix R̃. More details are provided in Appendix C.

We present in Figure 4.1 an example of simulation to the advection-diffusion SPDE on a meshed sphere. We took P to
be a polynomial of degree 1 and fS to be the inverse of a polynomial of degree 1. The vector field was parametrized
thanks to two scalar functions as in (6). As seen in the simulation, the resulting random fields seems to be able to
recreate complex convection and diffusion phenomena.

4.2 Stabilization

Similarly to the Euclidean case, the Galerkin approximation of advection-diffusion SPDEs on surfaces are subject
to instabilities when the advection term dominates the diffusion term [21]. This phenomenon can be observed in
Figure 4.2B, where a GRF on a cortical surface is simulated using the scheme described in Proposition 4.4: as one can
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notice in the animation, the values taken by the field quickly explode and tend to oscillate. These instabilities are due to
the fact that in advection-dominated cases, the non-symmetric part of Γ in (12) dominates and causes the linear systems
involving Γ to become ill-conditioned. To avoid such instabilities, it is usual to either sufficently decrease the time step
δt, or to introduce a stabilization term to advection-diffusion SPDEs [10].

In the latter case, following the approach of Clarotto et al. [9], we use the Streamline Diffusion stabilization method [5].
This method consists in adding n additional term in the variational formulation of SPDE (8), namely the bilinear form
defined on VN by

aS(v1, v2) = h⟨g(γ,∇v1),
1√

g(γ, γ))
g(γ,∇v2)⟩, v1, v2 ∈ VN ,

where h denotes the size of the triangulation mesh. This term effectively adds a small diffusion along the local direction
of the advection γ. Note that scaling this term by h allows to minimize its impact on the SPDE solution: for instance, in
the Euclidean setting, the resulting errors due to the introduction of this term are of order O(h).
In practice, when adding the stabilization term SPDE (8), the derivation of the recursion remains the same. The only
change is the introduction of an additional matrix in the definition (12) of Γ, which now reads:

Γ = I +
δt

c

(
P (R̃) + B̃ + S̃

)
, (16)

where S̃ = (
√
C)−1S(

√
C)−T is the scaled stabilization matrix, and the entries of S are given by

Sij = h⟨g(γ,∇ψi),
1√

g(γ, γ))
g(γ,∇ψj)⟩, 1 ≤ i, j ≤ N.

As seen Figure 4.2C, this method allowed us to get rid of the instabilities in the simulation.

4.3 Covariance structure

The recursion in Proposition 4.2 can be used to derive, for any K ∈ N, the expression of the precision matrix of
the vectors z(0), . . . ,z(K). Let us first introduce some notations. For Θ1 ∈ RN×N ,Θ2 invertible, let L(Θ1,Θ2) ∈
R(K+1)N×(K+1)N andD(Θ1,Θ2) ∈ R(K+1)N×(K+1)N be the block matrices given by

L(Θ1,Θ2) =


I

−Θ2 Θ1

. . .
. . .

−Θ2 Θ1

 , and D(Θ1,Θ2) =


Θ1

Θ2

. . .

Θ2

 . (17)

The next proposition gives the expression of the precision matrix of the coefficients z(0), . . . ,z(K) obtained through
the recursion (13).
Proposition 4.4. Let us assume that the initial condition of SPDE (8) can be expressed as

Z(0, ·) = f0(−∆N )YN

for some function f0 : R+ → R that is bounded takes positive values. Let then X = ((x(0))T , . . . , (x(K))T )T

be the vector obtained by concatenating the vectors x(0), . . . ,x(K) defined in Proposition 4.2, and similarly, let
Z = ((z(0))T , . . . , (z(K))T )T .

LetQX (resp. QZ) the precision matrix ofX (resp. Z). Then we have the following relations{
QX = L(Γ, I)T D

(
f−2
0 (R̃), f−2

δt (R̃)
)
L(Γ, I),

QZ =D
(√
C,
√
C
)
QX D

(
(
√
C)T , (

√
C)T

)
,

(18)

Proof. First, note that by definition of Z(0, ·) and f0, we can write z(0) = (
√
C)−T f0(R̃)w(0) wherew(0) ∼ N (0, I)

(cf. proof of Proposition 4.2), and the function f−1
0 = (1/f0) is well-defined on R+.

LetW = ((w(0))T , . . . , (w(K))T )T be defined from the vectorsw(0)) in Proposition 4.2. In particular, its precision
matrix isQW = I . We can then rewrite (13) in matrix form as

L(Γ, I)X =D
(
f0(R̃), fδt(R̃)

)
W .

8
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(A) Advection potential function ξ as defined in the
parametrization (5).

(B) Numerical solution of the SPDE, without stabilization. (C) Numerical solution of the SPDE, with stabilization.

Figure 4.2: Simulation of the spatio-temporal advection-diffusion SPDE on a cortical surface, represented from three
different viewpoints on the surface (t represents the time step, std-dev the standard deviation of the field values across

the surface).

Taking the covariance of both side of this inequality, we get

L(Γ, I)Q−1
X L(Γ, I)T =D

(
f20 (R̃), f2δt(R̃)

)
,

where we used the fact that D
(
f0(R̃), fδt(R̃)

)
is block diagonal and that QW = I . By then inverting both sides,

we then retrieve our claim on QX . Finally, note that by definition of x(k) (k ≥ 0) in Proposition 4.2, we have
X =D

(
(
√
C)T , (

√
C)T )Z. By once again taking the covariance and then inverting both sides of this equality, we

retrieve our claim onQZ .

Remark 4.5. The explicit computation of the precision matrixQZ results in a block tri-diagonal matrix given by

QZ =



Γ0 −Γ2

−ΓT
2 Γ1 −

Γ2

. . .
. . .

. . .

−ΓT
2 Γ1 −Γ2

−ΓT
2 Γ3


,

where

Γ0 = (
√
C)

(
f−2
0 (R̃) + f−2

δt (R̃)
)
(
√
C)T , Γ1 = (

√
C)

(
ΓT f−2

δt (R̃)Γ+ f−2
δt (R̃)

)
(
√
C)T ,

Γ2 = (
√
C)f−2

δt (R̃)Γ(
√
C)T , Γ3 = (

√
C)ΓT f−2

δt (R̃)Γ(
√
C)T .
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Figure 4.3: Spatio-temporal evolution of the covariance between a reference point (in blue) and the rest of the points in
the domain, for the spatio-temporal model simulated in Figure 4.1. The color (red to blue) represent the value of the

covariance.

As an illustration, starting from the same model as the one simulated in Figure 4.1, we represent in Figure 4.3 the
spatio-temporal evolution of the covariance between the value of the field at time t = 0 at three reference points (in
blue), and the values of the field elsewhere and at later times. These covariance are computed using the formula in
Proposition 4.4 for the spatio-temporal precision matrix of the field. As one can note in the animation, the zone of
high-correlation “moves” along the advection direction, as expected in an advection problem.

The covariance matrixQZ of the Euler discretization of Z can be expressed as the product of block diagonal and block
bi-diagonal matrices. This particular structure allows to propose scalable algorithms to perform products with vectors,
solving linear systems and computing the log-determinant, all of which will prove useful when tackling inference and
prediction problems.

For instance, the log-determinants of QX and QZ can be deduced from the log-determinants of the diagonal block
entries of the matrices L(Γ, I),D

(
f−2
0 (R̃), f−2

δt (R̃)
)

andD
(√
C,
√
C
)
. We obtain in particular the relations{

log |QX | = K log |ΓTΓ|+ log |f−2
0 (R̃)|+K log |f−2

δt (R̃)| = K log |ΓTΓ| − log |f20 (R̃)| −K log |f2δt(R̃)|,
log |QZ | = 2(K + 1) log |

√
C|+ log |QX |,

Hence, in order to compute its log-determinant, we do not need to build and store the matrixQZ , but rather only need to
store the matrices R̃, Γ and

√
C. This ensures that the storage needs for that computation remain the same as the number

of time steps considered K increases (which is not the case when using directly the matrix QZ ∈ R(K+1)N×(K+1)N ).

As for the matrix-vector product F = ((f (0))T , . . . , (f (K))T )T = QZE (for E = ((e(0))T , . . . , (e(K))T )T ∈
R(K+1)N ), it can be computed iteratively while requiring only products between the matrices R̃, Γ and

√
C and vectors

(cf. Algorithm 1). Finally, the linear system L(Θ1,Θ2)E = F can be also solved iteratively by substitution, by
leveraging the bi-diagonal structure of the matrix L(Γ, I). This iterative approach only requires to compute products
between functions of the matrix R̃ and vectors, and to be able to solve linear systems involving Γ (cf. Algorithm 4).

5 Prediction and inference from data

Let T > 0. We assume that the time interval [0, T ] is discretized into K + 1 regular time steps of size δt = T/K. We
hence write tk = kδt for k ∈ {0, . . . ,K}.
We consider a statistical model with fixed and random effects to model observations of some variable u in the
spatiotemporal domain [0, T ]×Mh. The fixed effects correspond to a regression of a set of q covariates, and the random
effects are modeled as the solution , to which an independent measurement noise is added. More precisely, for each
k ∈ {0, . . . ,K}, we assume that we have nk observations of u at some locations s(k)1 , . . . , s

(k)
nk ∈Mh. We then denote

by u(k) ∈ Rnk the vector containing these observations, i.e. u(k) = (u
(
tk, s

(k)
1

)
, . . . , u

(
tk, s

(k)
nk

)
)T . Finally, we denote

by U ∈ RNo the vector containing all the No = n0 + · · ·+ nK observations, i.e. U = (
(
u(0)

)T
, . . . ,

(
u(K)

)T
)T . Let

ε be a vector of No independent standard Gaussian variables and σ > 0. Then the statistical model for the observations
takes the form

U = ηb+ATZ + σε,
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where b ∈ Rq is the vector of q fixed effects, η ∈ RNo×q is a matrix of covariates, Z is the vector containing the
weights defining the solution of SPDE (8) as in Proposition 4.4, andA ∈ R(K+1)N×No is the block diagonal matrix
whose k-th block (k ∈ {0, . . . ,K})A(k) ∈ RN×nk is defined by

[A(k)]ij = ψi(s
(k)
j ), i ∈ {1, . . . , N}, j ∈ {1, . . . , nk}.

5.1 Prediction by kriging

Predictions of the spatio-temporal field are tackled using conditional expectations (and variances), following the
approach outlined by Clarotto et al. [9], Pereira et al. [24]. The next proposition provides explicit formulas for the
computation of the conditional expectation and variance of the field Z given the observations U .
Proposition 5.1. The conditional expectation (also called kriging predictor) E[Z|U ] of Z given U is given

E[Z|U ] = KQZ ,σ2(U − ηb) = (QZ + σ−2AAT )−1A(U − ηb),

and where the map K is defined in (21). Besides, the conditional variance Var[Z|U ] is given by

Var[Z|U ] = (QZ + σ−2AAT )−1.

Proof. This result is a direct consequence of the fact that the vector (ZT ,UT )T is Gaussian, and a complete proof is
given in [24, Proposition 3.1].

For k ∈ {0, . . . ,K}, the spatial prediction Z∗(tk, p) of the field Z(tk, ·) at any location p ∈Mh is deduced from the
conditional expectation E[Z|U ] by leveraging the linearity of the (conditional) expectation, thus giving:

Z∗(tk, p) = E[Z(tk, p)|U ] =


ψ1(p)

...

ψN (p)


T

E[Z|U ]. (19)

Time extrapolation at times tk, k > K, can be tackled by similarly. Indeed, by taking the conditional expectation
E[ · |U ] on both sides of the recursion (13) we get

E[z(k+1)|U ] = (
√
C)−TΓ−1(

√
C)TE[z(k)|U ], k ≥ K, (20)

where we recall that z(k) is the weight vector defining the solution Z at time tk (cf. Proposition 4.2), and E[z(K)|U ]
corresponds to the N last rows of E[Z|U ]. Then spatial predictions at any locations can one again be obtained
using (19).

From now on, let us denote by KQ,s2 the linear map given by

K(v ; Q, s2) = s−2(Q+ s−2AAT )−1Av, v ∈ RNo , (21)

where s > 0 and Q ∈ R(K+1)N×(K+1)N is a positive definite matrix. As seen in the proposition above, we have
E[Z|U ] = K(U − ηb ; QZ , σ

2). Therefore, efficient algorithms to evaluate K are fundamental to perform predictions.
A first approach to compute (21) consists in factorizing the matrixM = (Q+s−2AAT ) (using for instance a Cholesky
decomposition), and then using the factorization to efficiently solve the linear system in (21). However, since the matrix
M has size N(K + 1)×N(K + 1), building, storing and factorizing can become computationally prohibitive in some
applications where either N or K (or both) are large.

An alternative approach to evaluate K consists in solving the linear system in (21) using a matrix-free iterative
algorithm [30]. Such algorithms yield an approximate solution of the linear system using through an iterative process
which requires at each iterations products between M and vectors. Such products can in turn be evaluated without
having to explicitly build the matrixM , but using instead the diagonal block structure ofA. In this setting, only the
“spatial” matrices Γ, R̃ and

√
C andA(k) (0 ≤ k ≤ K), which are sparse and of size at most N ×N , are stored.

Note that linear systems of the form of (21) are classically encountered in regularized least-square problems, and are
known to be ill-conditioned when s2 is small. This can make the convergence of classical iterative algorithms (e.g
Conjugate gradient) very slow. To circumvent this problem, appropriate preconditioning should be applied to the
system. For instance, Clarotto et al. [9] propose to use the Gauss–Siedel preconditioner, which in our case takes the

11
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(A) Simulation from which the data are sampled.

(B) Kriging predictor.

Figure 5.1: Spatio-temporal kriging predictor from data sampled from a simulation of the SPDE model and with a
measurement noise of standard-deviation σ = 0.1. The blue points locate the places where the observations are taken.

form of lower-triangular block matrix. An alternative method consists in noting that the solution x of the linear system
(Q+ s−2AAT )x = Av satisfies is (part of) the solution of the augmented system Q A

AT −s2I

x

y

 =

v

0

 , (22)

which in turn is equivalent (after applying a block diagonal left and right preconditioners) to the system I (L−1
Q A)

(L−1
Q A)T −s2I

x̂

ŷ

 =

L−1
Q v̂

0

 , (23)

where L−1
Q =D

(√
C,
√
C)

)
L(Γ, I)TD

(
f−1
0 (R̃), f−1

δt (R̃)
)
, x̂ = LT

Qx, and ŷ = y. Systems of the form (22)-(23)
are known as saddle-point systems and specific algorithms have been devised to tackle them, such as the TriMR
algorithm [23]. In the numerical applications presented in this work, the evaluations of the map K are done using the
Julia implementation of the TriMR algorithm in the Krylov.jl to solve the system (23).

As an illustration, we present in Figure 5.1 the results of a kriging prediction based on data sampled from a simulation
of the solution to the advection-diffusion model. For the SPDE, we use the same model as the one in Figure 4.1.
The observations are assumed to be at the same spatial locations at each time step, and a measurement noise of
standard-deviation σ = 0.1 is considered. When comparing the kriging predictor to the actual simulation, we can notice
that the predictor enforces the transport phenomena modeled by the SPDE.

Finally, note that the conditional expectation can also be used to generate conditional simulations at time steps tk,
0 ≤ k ≤ K of the field Z, by leveraging the fact that the conditional variance does not depend explicitly on the
conditioning data U . This approach, presented in more details in [9, Section 3.3], is recalled below:

1. Compute a non-conditional simulation ZNC by running the recursion in Proposition 4.2.
2. Generate new observations by computing UNC = ηb+ATZNC + σεNC .
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3. Compute the residuals rNC = ZNC − E[ZNC |UNC ].
4. Return the conditional simulation ZC = E[Z|U ] + rNC .

Conditional simulations at further time steps are then obtained using once again the recursion in Proposition 4.2.

5.2 A few words about inference

Let θ be the vector containing the parameters of (8), and let ν = (θT , bT , σ)T be the vector containing all the parameters
of the statistical model. The next proposition, proven in [9, Section 3.1] gives the likelihood of the observations.
Proposition 5.2. The likelihood function of the vector of observations U is given by

L(ψ) = −No

2
log 2π +

1

2
log |QU (ψ)| − σ−2

2

(
∥U − ηb∥22 − (U − ηb)TATKQZ(θ),σ2(U − ηb)

)
, (24)

whereQU (ψ) = (ATQZ(θ)
−1A+ σ2I)−1, and

log |QU (ψ)| = −No log σ
2 + log |QZ(θ)| − log |QZ(θ) + σ−2AAT |.

The evaluation of the log-likelihood (24) can be tackled using the approach described in [24, Section 4] and [9, Section
3.1]. Indeed, the map K can be evaluated using either a preconditioned Conjugate gradient algorithm or a saddle point
algorithm (cf. Section 5.1). And the log-determinant terms can be evaluated using either Cholesky decompositions of
the matrices (when their size allow it) or using matrix-free approaches based on Hutchinson trace estimators [14]. The
maximization of the log-likelihood can then be tackled using gradient-based optimization (based on finite-difference
approximations of the gradient) or the Nelder-Meade algorithm (which only requires evaluations of the cost function).
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A Mathematical tools

A.1 Functions of the Laplacian and colored noise

Let {λk}k∈N denote the set of eigenvalues of the Laplace– Beltrami operator −∆M on (M, g), and {ek}k∈N denote
the associated eigenfunctions. In particular, {ek}k∈N form a basis of the space L2(M). For f : R+ → R, we define
Df ⊂ L2(M) as

Df = {ϕ ∈ L2(M) :
∑
j∈N

f(λj)
2⟨ϕ, ej⟩2 <∞}.

Note that if f is bounded, then Df = L2(M). Then, the function of the Laplacian f(−∆M) is the operator
f(−∆M) : Df → L2(M) defined by

f(−∆M)ϕ =
∑
j∈N

f(λj)⟨ϕ, ej⟩ej , ϕ ∈ L2(M).
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Let then fS : R+ → R be a bounded function, and {wj}j∈N be a sequence of independent standard Gaussian variable.
We call colored noise the linear functional fS(−∆M)WS defined by

fS(−∆M)WS : ϕ ∈ H 7→ ⟨fS(−∆M)WS , ϕ⟩ =
∑
j∈N

wjfS(λj)⟨ϕ, ej⟩.

Note that for any ϕ ∈ H , the series ⟨fS(−∆M)WS , ϕ⟩ converges in quadratic mean since E[⟨fS(−∆M)WS , ϕ⟩] = 0,
and by independence of the variables wj ,

E[|⟨fS(−∆M)WS , ϕ⟩|2] =
∑
j∈N
|fS(λj)|2|⟨ϕ, ej⟩|2 ≤ (sup

R+

|fS |)2∥ϕ∥2S <∞.

Besides, using the same arguments, we have for any ϕ1, ϕ2 ∈ H ,

Cov[⟨fS(−∆M)WS , ϕ1⟩, ⟨fS(−∆M)WS , ϕ2⟩] =
∑
j∈N
|fS(λj)|2⟨ϕ1, ej⟩⟨ϕ2, ej⟩ = ⟨fS(−∆M)ϕ1, fS(−∆M)ϕ2⟩,

Hence, in the case where fS(λ) = 1 for any λ ≥ 0, fS(−∆M)WS =WS corresponds to the definition of the spatial
Gaussian white noise on L2(M). Also, whenever fS satisfies fS(λ) = Oλ→∞(λ−α) with α > d/4, fS(−∆M)WS

can be identified with a square-integrable H-valued random variable, and decomposed as [16, Proposition 2.7]:

fS(−∆M)WS =
∑
j∈N

wjfS(λj)ej .

For instance, if fS(λ) = |κ2 + λ|−α, then YS = fS(−∆M)WS can be seen as a solution of the Whittle-Matérn SPDE

(κ2 −∆M)αYS =WS (25)

and can thus be seen as a Whittle-Matérn random field onM.

A.2 Galerkin approximation

For N ∈ N, let VN = span {ψk : 1 ≤ k ≤ N} where ψ1, . . . , ψN ∈ H1(Mh) are linearly independent functions. Let
C andR be the matrices whose entries are respectively given by

Cij = ⟨ψi, ψj⟩, Rij = ⟨∇ψi,∇ψj⟩. (26)

The Galerkin approximation of −∆M over VN is the linear operator −∆N : VN → VN satisfying, for any ϕ, v ∈ VN ,

⟨−∆Nϕ, v⟩ = ⟨∇ϕ,∇v⟩.

As defined, −∆N is a symmetric endomorphism, and as such is diagonalizable. Let {λ(N)
k }1≤k≤N denote its eigen-

values, and let {e(N)
k }1≤k≤N be a set of associated eigenfunctions forming an orthonormal basis of VN . Note that,

following [16, Corollary 3.2], {λ(N)
k }1≤k≤N are also the eigenvalues of the matrix R̃. Besides, the map

E : v ∈ RN 7→
N∑

k=1

[
(
√
C)−Tv

]
k

ψk ∈ VN (27)

is an isomorphism that maps the eigenvectors of R̃ to the eigenfunctions of−∆N , and an isometry between (RN , ∥ · ∥2)
and (VN , ∥ · ∥S).

A.3 Matrix functions

Let S ∈ RN×N be a real symmetric matrix and let f : R→ R. In particular let us denote by λ1, . . . , λN the eigenvalues
of S and let V ∈ RN×N be an orthogonal matrix such that

S = V


λ1

. . .

λN

V T . (28)

15
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Then, the matrix function f(S) ∈ RN×N is the matrix defined by

f(S) = V


f(λ1)

. . .

f(λN )

V T .

Note in particular that this definition is independent of the choice of matrix V in (28), and that when f is a polynomial,
f(S) coincides with the usual notion of matrix polynomial.

B Algorithms

We expose in this section a few algorithms that are necessary to perform matrix-free predictions.

Algorithm 1 Matrix-vector product byQZ

Depends on: Matrices (
√
C), R̃,Γ in (18).

Input: VectorX = ((x(0))T , . . . , (x(K))T )T ∈ R(K+1)N .
Output: Vector Y = ((y(0))T , . . . , (y(K))T )T = QZX .

1: for k = 0 to K do
2: Initialize y(k) = (

√
C)Tx(k)

3: Initialize z(k) = 0
4: end for
5: Set z(0) ← y(0)

6: for k = 1 to K do
7: Set z(k) ← Γy(k) − y(k−1)

8: end for
9: Set z(0) ← f−2

0 (R̃)z(0)

10: for k = 1 to K do
11: Set z(k) ← f−2

δt (R̃)z(k)

12: end for
13: Set y(K) ← ΓTz(K)

14: for k = K − 1 to 1 do
15: Set y(k) ← ΓTz(k) − z(k+1)

16: end for
17: Set y(0) ← z(0) − z(1)

18: for k = 0 to K do
19: Set y(k) ← (

√
C)y(k)

20: end for
21: return Y = ((y(0))T , . . . , (y(K))T )T .

16
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Algorithm 2 Solve a linear system defined by L(Θ1,Θ2)

Depends on: Matrices Θ1,Θ2 in (17).
Input: VectorX = ((x(0))T , . . . , (x(K))T )T ∈ R(K+1)N .
Output: Vector Y = ((y(0))T , . . . , (y(K))T )T = L(Θ1,Θ2)

−1X .

1: for k = 0 to K do
2: Initialize y(k) = 0
3: end for
4: Set y(0) ← x(0)

5: for k = 1 to K do
6: Set y(k) ← Θ−1

1

(
Θ2y

(k−1) + x(k)
)

7: end for
8: return Y = ((y(0))T , . . . , (y(K))T )T .

Algorithm 3 Solve a linear system defined by L(Θ1,Θ2)
T

Depends on: Matrices Θ1,Θ2 in (17).
Input: VectorX = ((x(0))T , . . . , (x(K))T )T ∈ R(K+1)N .
Output: Vector Y = ((y(0))T , . . . , (y(K))T )T = L(Θ1,Θ2)

−TX .

1: for k = 0 to K do
2: Initialize y(k) = 0
3: end for
4: Set y(K) ← Θ−T

1 x(K)

5: for k = K − 1 to 1 do
6: Set y(k) = Θ−T

1

(
ΘT

2 y
(k+1) + x(k)

)
7: end for
8: Set y(0) ← ΘT

2 y
(1) + x(0)

9: return Y = ((y(0))T , . . . , (y(K))T )T .

Algorithm 4 Solve a linear system defined byQZ

Depends on: Matrices (
√
C), R̃,Γ in (18).

Input: VectorX = ((x(0))T , . . . , (x(K))T )T ∈ R(K+1)N .
Output: Vector Y = ((y(0))T , . . . , (y(K))T )T = Q−1

Z X .

1: for k = 0 to K do
2: Initialize y(k) = (

√
C)−1x(k)

3: end for
4: Set Y ← L(Γ, I)−TY using Algorithm 3

5: Set y(0) ← f20 (R̃)y(0)

6: for k = 1 to K do
7: Set y(k) ← f2δt(R̃)y(k)

8: end for
9: Set Y ← L(Γ, I)−1Y using Algorithm 2

10: for k = 0 to K do
11: Set y(k) ← (

√
C)−Tx(k)

12: end for
13: return Y = ((y(0))T , . . . , (y(K))T )T .

17
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C Diffusion-only case

In the absence of advection term (i.e. when γ = 0), an alternative time discretization method for the SPDE (8) can be
proposed. Indeed, note that in this case, SPDE (8) takes the form

∂Z

∂t
(t, ·) + 1

c
P (−∆N )Z(t, ·) = τ√

c
WT ⊗ YS , t ∈ [0, T ], (29)

Let us write for any j ∈ {1, . . . , N} and t ∈ [0, T ], ξj(t) = ⟨Z(t, ·), e(N)
j ⟩. By testing (29) against e(N)

j , and following
the link between the stochastic forcing termWT ⊗ YS and cylindrical Wiener processes, we get that ξj satisfies the
following SDE:

dξj(t) = −P
(
λ
(N)
j

)
ξj(t)dt+

τ√
c
fS

(
λ
(N)
j

)
dβj(t), 1 ≤ j ≤ N, t ∈ [0, T ], (30)

where {βj}j∈N denotes a sequence of independent Brownian motions. The SDE (30) models an Ornstein–Uhlenbeck
process, whose analytical solution is known [31]. In particular, ξj is a Gaussian process and for any t0 ≥ 0 and h > 0,
the conditional distribution π(ξj(t0 + h)|xj(t0)) of ξj(t0 + h) given ξj(t0) is Gaussian and given by

π(ξj(t0 + h)|ξj(t0)) = N
(
mh

(
λ
(N)
j

)
ξj(t0), σh

(
λ
(N)
j

)2)
,

where mh and σh are the functions defined by

mh(λ) = e−hP (λ), λ ≥ 0,

and

σh(λ) =
τ√
c

fS(λ)√
2P (λ)

√
1− e−2hP (λ), λ ≥ 0.

For t ∈ [0, T ], let ξ(t) = (ξ1(t), . . . , ξN (t))T be the vector containing the N Ornstein–Uhlenbeck processes. Using
the fact that the entries of ξ are independent (since the Brownian motions βj are independent), we have

π(ξ(t0 + h)|ξ(t0)) = N
(
mh

(
Λ(N)

)
ξ(t0), σ

2
h

(
Λ(N)

))
.

In turn, we introduce for t ∈ [0, T ], the vector z(t) = (z1(t), . . . , zN (t))T such that

Z(t, ·) =
N∑
j=1

zj(t)ψj (31)

and let x(t) = (
√
C)Tz(t). Note that using the same arguments as the ones used in proof of Proposition 4.2, we can

deduce the relation
x(t) = (

√
C)Tz(t) = V ξ(t), t ∈ [0, T ].

Hence, we have

π(x(t0 + h)|x(t0)) = N
(
Vmh

(
Λ(N)

)
V Tx(t0),V σ

2
h

(
Λ(N)

)
V T

)
.

which gives, by definition of the matrix functions,

π(x(t0 + h)|x(t0)) = N
(
mh

(
R̃
)
x(t0), σ

2
h

(
R̃
))
. (32)

This last property can be used to derive the joint distribution of observations of the vector x(t) (and therefore of the
vector z(t)) at irregular time steps, and for instance sample them. Indeed, let 0 ≤ t0 ≤ · · · ≤ tK = T , then using the
Markov property of the process x(t) (inherited from the process ξ(t)), we have

π(x(t0), . . . ,x(tK)) = π(x(tK)|x(tK−1)) · · ·π(x(t1)|x(t0))π(x(t0)).

This decomposition implies that (jointly) sampling the vectors (x(t0), . . . ,x(tK)) can be done by first sampling x(t0)
and then, for k ≥ 0, by drawing x(tk+1) from the distribution π(x(tk+1)|x(tk)) given in (32). hence the following
proposition.
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Proposition C.1. Let K ∈ N, and 0 ≤ t0 ≤ · · · ≤ tK = T . For k ∈ {0, . . . ,K}, let z(tk) be the vector defining the
solution of the diffusion (29) at time tk as in (31) and let δtk = tk+1 − tk.

Let x(t0) = (
√
C)Tz(t0). Then we have the following recursion for k ≥ 0,{

x(tk+1) = mδtk

(
R̃
)
x(tk) + σδtk

(
R̃
)
w(k+1),

z(tk+1) = (
√
C)−Tx(tk+1),

(33)

where {w(k)}1≤k≤K is a sequence of independent centered Gaussian vectors with covariance matrix I .

Contrary to the implicit Euler scheme introduced in Proposition 4.2, the present scheme is exact since it results from the
exact solution (in distribution) to the Ornstein–Uhlenbeck processes that define the SPDE solution. Once again, the
precision matrix of the vectors can be derived, using the same approach as for Proposition 4.4.
Proposition C.2. Let us assume that the initial condition of SPDE (8) can be expressed as

Z(t0, ·) = f0(−∆N )YN ,

for some function f0 : R+ → R that is bounded takes positive values. Let then X = (x(t0)
T , . . . ,x(tK)T )T be

the vector obtained by concatenating the vectors x(t0), . . . ,x(tK) defined in Proposition C.1, and similarly, let
Z = (z(t0)

T , . . . ,z(tK)T )T .

LetQX (resp. QZ) the precision matrix ofX (resp. Z). Then we have the following relations{
QX = LT

m Dσ Lm,

QZ =D
(√
C,
√
C
)
QX D

(
(
√
C)T , (

√
C)T

)
,

where

Lm =


I

−mδt0

(
R̃
)

I

. . .
. . .

−mδtK−1

(
R̃
)

I

 , and Dσ =


f−2
0 (R̃)

σ−2
δt0

(
R̃
)

. . .

σ−2
δtK−1

(
R̃
)

 .

Note that once again, products with vectors, solving linear systems and computing the log-determinant can be done
without requiring to build the matrixQZ . Indeed, the log-determinants are now given by

log |QX | = log |f−2
0 (R̃)|+

K−1∑
k=0

log |σ−2
δtk

(R̃)| = log |f20 (R̃)|+
K−1∑
k=0

log |σ−2
δtk

(R̃)|,

log |QZ | = 2(K + 1) log |
√
C|+ log |QX |,

and Algorithms 1 and 4 used earlier to compute matrix-vector products and to solve linear systems can be straightfor-
wardly adapted to the new expression ofQZ .
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